Mise à jour - Etude de sensibilité sur le moteur de calcul règlementaire RE 2020

Version moteur de calcul :

RT 2012: V8.1

RE 2020 : Résidentiel : R_346_B_278 et R_427

Tertiaire: R_379 et R_452

11 mai 2021 - V1

Les bureaux d'études :

Chargés de mission :

Bastide Bondoux	POUGET Consultants	TRIBU Energie		
Hala Rochdi h.rochdi@bastide-bondoux.com	Thomas Lemerle thomas.lemerle@pouget-consultants.fr David Lebannier david.lebannier@pouget-consultants.fr	Clément BRION clement.brion@tribu-energie.fr Laurent Mazie Laurent.mazie@tribu-energie.fr		

Consortium des mandataires

Les BET ont établi des devis pour chaque mandataire sur la base d'un cahier des charges générale approuvé par l'ensemble des mandataires.

Références des devis des études :

ВЕТ	REFERENCE BET
TRIBU ENERGIE	D-TE-ET-2020/00266
POUGET CONSULTANT	18C235
BASTIDE BONDOUX	PRO2402012012-1

SOMMAIRE

1.	PRE	SENTATION DES COMMANDITAIRES DE CETTE ETUDE	5
2.	SYN	ITHESE DES CONSTATS	6
	2.1.	LE CHANGEMENT DE MOTEUR DE CALCUL R_346 -> R_427	6
	2.2.	EN RESUME POUR LA MAISON INDIVIDUELLE	7
	2.3.	EN RESUME POUR LE LOGEMENT COLLECTIF	8
	2.4.	EN RESUME POUR LE TERTIAIRE	9
3.	DET	AILS DE L'ETUDE	10
	3.1.	PRESENTATION	10
	3.2.	NOTE D'AIDE A LA COMPREHENSION	10
	3.3.	LES HYPOTHESES RETENUES PAR BET	11
	3.4.	LE CAHIER DES CHARGES DE L'ETUDE	13
4.	ANA	ALYSE DES RESULTATS PAR TYPOLOGIE : MAISON INDIVIDUELLE	17
	4.1.	L'IMPACT DE L'EVOLUTION DU MOTEUR DE CALCUL RE 2020 (VERSION R_346 -> R_427)	17
	4.2.	ANALYSE DES RESULTATS PAR RAPPORTS AUX EXIGENCES PROPOSEES	19
	4.3.	PRESENTATION DES RESULTATS POUR LA MI DE PLAIN-PIED (1N)	21
	4.4.	PRESENTATION DES RESULTATS POUR LA MI AVEC COMBLES AMENAGES (R+C)	26
	4.5.	PRESENTATION DES RESULTATS POUR LA MI AVEC TOITURE TERRASSE (R+1)	31
	4.6.	LE NOUVEL INDICATEUR DU CONFORT D'ETE : LES DEGRES HEURES (DH)	36
5.	ANA	ALYSE DES RESULTATS PAR TYPOLOGIE : LE LOGEMENT COLLECTIF	44
	5.1.	L'IMPACT DE L'EVOLUTION DU MOTEUR DE CALCUL (VERSION R_346 -> R_427)	44
	5.2.	PRESENTATION DES RESULTATS POUR LE LC	47
	5.3.	LE NOUVEL INDICATEUR DU CONFORT D'ETE : LES DEGRES HEURES (DH)	57
6.	ANA	ALYSE DES RESULTATS PAR TYPOLOGIE : TERTIAIRE - ENSEIGNEMENT	59
	6.1.	L'IMPACT DE L'EVOLUTION DU MOTEUR DE CALCUL RE 2020 (VERSION R_379 -> R_452)	59
	6.2.	PRESENTATION DES RESULTATS	61
	6.3.	LE NOUVEL INDICATEUR DU CONFORT D'ETE : LES DEGRES HEURES (DH)	66
7.	ANA	ALYSE DES RESULTATS PAR TYPOLOGIE : TERTIAIRE – BUREAUX	70
	7.1.	L'IMPACT DE L'EVOLUTION DU MOTEUR DE CALCUL RE 2020 (VERSION R_379 -> R_452)	70
	7.2.	PRESENTATION DES RESULTATS	72
	7.3.	LE NOUVEL INDICATEUR DU CONFORT D'ETE : LES DEGRES HEURES (DH)	78

11 mai 2021

8.	TAB	LE DES ILLUSTRATIONS	82
8.	.1.	TABLE DES FIGURES	82
8.	.2.	TABLES DES TABLEAUX	.83

1. PRESENTATION DES COMMANDITAIRES DE CETTE ETUDE

Le consortium de cette étude a été initialement créé en juin 2018 pour réaliser des études sur un nouvel indicateur du confort d'été proposé par la DHUP nommé la DIES. Dès le mois de décembre 2019, le consortium a souhaité prolonger ses analyses avec le moteur de calcul RE 2020 en proposant à la DHUP un cahier des charges. La première étude avec le moteur de calcul RE 2020 R_346 a été initiée en juillet 2020, un rapport et l'ensemble des résultats de calcul ont été partagés avec la DHUP, ils sont disponibles sur le site « bâtiment énergie carbone ». Avec les propositions d'indicateurs et de seuils réalisés par la DHUP et avec la nouvelle mise à jour du moteur de calcul de novembre 2020 (version R_427), les membres du consortium ont souhaité mettre à jour une partie de la première étude pour :

- Analyser les impacts des modifications de la méthode de calcul, en particulier sur l'indicateur Bbio et le Besoin de froid (Bfr) ainsi que sur l'indicateur Cep, nr et le Cep froid (Cfr),
- Analyser les seuils proposés par la DHUP au CSCEE de décembre 2020 et notifiés à la commission Européenne.

<u>Point d'attention</u>: Les modifications de la méthode calcul ont des impacts importants sur les résultats présentés dans ce rapport, par conséquence il n'est pas possible de comparer les résultats sur les indicateurs Bbio et Cep, nr entre cette étude et sa version précédente.

La pluralité des acteurs qui composent le consortium implique un fonctionnement neutre, impartial et transparent. Les études financées par le consortium ont pour objectif de permettre un débugage optimal du moteur complet sans visées mercantiles.

- Commanditaires: CIMbéton, Collectif Isolons la Terre Contre le CO₂, EDF, FFTB, FILMM, IGNES, UNICLIMA.
- Bureaux d'études réalisant les simulations : Bastide Bondoux en maison individuelle, Pouget Consultants en logement collectif, Tribu Energie en bureau et en enseignement.

Présentation des commanditaires de l'étude :

- CIMbéton: centre d'information sur le ciment et ses applications béton. Il a pour mission de faire connaître les progrès techniques des ciments et des bétons dans tous les secteurs de la construction, bâtiment, travaux publics, génie civil.
- Collectif Isolons la Terre contre le CO₂: regroupement d'industriels avec pour objectif de participer activement à la lutte contre le réchauffement climatique (ALDES HIRSCH Isolation KP1 LAFARGE HOLCIM France PLACOPLATRE SAINT-GOBAIN ISOVER SAINT-GOBAIN PAM Bâtiment France UNILIN VELUX).
- EDF : Leader mondial des énergies bas carbone, le groupe EDF rassemble tous les métiers de la production, du commerce et des réseaux d'électricité.
- **FFTB**: La Fédération Française des Tuiles et Briques est le porte-parole de la filière terre cuite qui regroupe 85 entreprises, artisanales ou très industrialisées.
- **FILMM**: Syndicat des laines minérales, il a pour mission de représenter les industriels français de laines minérales manufacturées.
- **IGNES** : Industries du Génie Numérique, Energétique et Sécuritaire fédère et représente 60 entreprises industrielles de toute taille, basées en France et en Europe.

• **UNICLIMA**: le syndicat des industries thermiques, aérauliques et frigorifiques, il compte 87 sociétés ou groupes leaders sur leurs marchés ce qui fait du syndicat le représentant légitime de la profession.

2. SYNTHESE DES CONSTATS

2.1. LE CHANGEMENT DE MOTEUR DE CALCUL R_346 -> R_427

- Impact sur le Bbio
- Le changement de moteur de calcul RE 2020 fait baisser le Bbio entre le moteur R_346 et R_427,
- Le Bch et Becl sont identiques avec les deux moteurs RE 2020,
- Le Bfr est diminué entre les deux versions, avec la modification de la méthode règlementaire pour les bâtiments non climatisés sur l'autorisation de l'ouverture des baies pour le rafraîchissement nocturne (moteur R_427).
- → Nous saluons l'évolution de la méthode de calcul du Bfr entre les deux versions de moteur de calcul. En effet, avec l'ancien moteur de calcul RE 2020 les valeurs de Bfr conduisaient à donner une place prépondérante aux besoins et consommations de froid en logement, contrairement aux constats réels terrain, surévaluant l'indicateur Bbio. Les calculs étaient réalisés fenêtres fermées la nuit en été dans tous les logements, neutralisant ainsi toutes les solutions passives de valorisation de la fraîcheur nocturne et augmentant artificiellement les besoins de froid rendant le Bfr très peu optimisable.

Impact sur le Cep, nr et DH

- Les DH sont identiques entre les deux versions de moteur de calcul,
- Cep, nr : la modification de moteur de calcul RE 2020 fait baisser l'indicateur entre le moteur R_346 et R 427,
- Le Cfr est diminué entre les deux versions de moteurs RE 2020 pour les logements non-climatisés avec la modification de la méthode sur le forfait de pénalisation : le Cfr est maintenant calculé par rapport au DH (moteur actuel R_427).
- → Nous saluons la modification de la méthode de calcul du Cfr pour les bâtiments non climatisés. Elle est maintenant réalisée en fonction du nombre de DH du projet. Ce nouveau calcul permet d'annuler l'effet de seuil de l'ancienne méthode entre un bâtiment avec 349 DH et un bâtiment avec 351 DH. De plus, cela va permettre d'assurer une meilleure lisibilité pour les concepteurs et BET du forfait de pénalisation par rapport à l'ancienne méthode (liée au Bfr).

2.2. EN RESUME POUR LA MAISON INDIVIDUELLE

Exigence Bbio max (Bbio RT 2012 -30%):

- Pour les maisons de plain-pied et avec combles aménagés, l'exigence « Bbiomax RE2020 » correspond bien à un « Bbiomax RT 2012 -30 % », avec dans certains cas des écarts légèrement inférieures ou supérieures à -30%.
- On constate un renforcement du Bbio max avec le coefficient de modulation Mbsurf pour les logements avec une SHAB supérieure à 100 m² par rapport au Bbio max RT 2012.
- → Les niveaux de performances pour la variante de l'étude qui se rapproche le plus de l'exigence Bbio max sont les variantes « Bbio RT 2012 40 points ». Leurs niveaux de performance correspondent à des solutions techniques présentes sur le marché et accessibles sans aucune rupture technologique, ce qui n'était pas le cas avec la version précédente du moteur de calcul RE 2020 (R_346).

Exigence Cep, nr max :

- En zone H3 le Cep, nr max semble quasiment inatteignable avec des systèmes courants de la RT 2012 comme par exemple avec une « PAC Air / Air + Effet joule + CET ».
- → L'exigence Cep, nr max apparait comme très contraignante pour cette zone climatique.

Indicateur DH :

- La comparaison entre les résultats du puits climatique et le puits hydraulique : des disparités importantes entre les résultats sur l'indicateur DH,
- L'action des brasseurs des brasseurs d'airs sur les DH est toujours très valorisée. Les brasseurs apparaissent comme un moyen très simple de réduire drastiquement l'inconfort, notamment en zone H3, elle est même supérieure à celle du puits climatique en zone H3...
- → Nous recommandons que l'ensemble du logement soit équipé en brasseurs d'air pour garantir le confort d'été avec cette technologie. L'action d'un brasseur est limitée uniquement à la pièce où il se situe, il est difficilement acceptable de réduire l'inconfort d'été de l'ensemble du bâtiment avec un seul brasseur d'air.
- La mise à jour du moteur de calcul (version R_452) permet à la variante « Volets roulants automatisés » d'afficher des résultats qui apparaissent pertinents par rapport au moteur de calcul précédent (R_427). Les volets roulants automatisés ont un impact important sur le Bbio et sur les DH, cet impact est nettement plus marqué en zone H3:-15 % entre le Bbio de base avec la variante « volets roulant automatisés » et -23 % pour l'indicateur DH.

Exigence DH max :

- L'amplitude sur le nombre de DH est très forte entre les zones climatiques « chaude » et « froide ». Logiquement, la zone H3 a le plus d'inconfort par rapport à la zone H1b et H2b.
- En zone H3, les variantes de base, qui respectent strictement les exigences de la RT 2012, sont proches ou supérieures à l'exigence DHmax de 1250 DH. Cela induit qu'un bâtiment avec des prestations respectant strictement la RT 2012, sans optimisation pour le confort d'été, est inconfortable dans cette zone climatique au regard de ce nouvel indicateur.
- → Ce niveau de DH élevé devrait permettre de bien discriminer les solutions pouvant améliorer le confort d'été.

Exigence Icénergie max: pas de sensibilités réalisées pour cet indicateur.

2.3. EN RESUME POUR LE LOGEMENT COLLECTIF

- Exigence Bbio max (Bbio RT 2012 -30%) :
- Le Bbio max RE 2020 proposé en logement collectif est bien un renforcement de l'exigence de 30 % par rapport au Bbio max RT 2012.
- → Les niveaux de performances pour la variante « Bbio RT 2012 -30% et 40% » sont des performances avec des solutions techniques présentent sur le marché et accessibles sans aucune rupture technologique.

Exigence Cep, nr max :

- L'exigence contraint principalement les solutions à effet joules toutes zones confondues et demande un renforcement de l'enveloppe pour la solution « gaz collectif » et « RCU » à un niveau de performance équivalent à Bbio RT 2012 -40% en zone H2b et H1b.
- En zone H3 l'exigence Cep, nr max apparait comme très contraignante.
- Une attention doit être portée sur l'optimisation du Cep_{déplacement} (+/- 5 kWhEP/m².an).

Indicateur DH:

- Variante « Occultations perméables + 1 brasseur » : cette variante permet en zone climatique H3 pour les logements non traversant de respecter l'exigence < à 1250 DH. L'action d'un brasseur est limitée à la pièce où il se situe, il semble difficilement acceptable de réduire l'inconfort d'été avec un seul brasseur d'air uniquement dans la pièce de vie par exemple.</p>
- → Il faut s'assurer que l'ensemble du logement soit équipé en brasseurs d'air pour garantir le confort d'été avec cette technologie dans l'ensemble du bâtiment.
 - Moteur de calcul : Protections mobiles automatisées qui bug alors que c'est un levier important pour l'amélioration des DH en particulier en zone H2d et H3.

Exigence DH max :

- L'amplitude sur le nombre de DH est forte entre les zones climatiques « chaude » et « froide » et très forte entre les logements traversant et non traversant. Logiquement, la zone H3 a le plus d'inconfort par rapport à la zone H1b et H2b.
- L'indicateur DH est contraignant uniquement pour la zone H3 en zone non traversante, sans amélioration sur le confort d'été le bâtiment de l'étude est non règlementaire (> à 1250 DH).
- → Ce niveau de DH élevé devrait permettre de bien discriminer les solutions pouvant améliorer le confort d'été.

■ Exigence Icénergiemax :

- L'exigence Icénergie max 2021 n'est pas contraignante les solutions testées,
- L'exigence Icénergie max 2024 est nettement plus contraignante, seules les solutions « PAC Double service »,
 à « effet joule » et en zone H3 « Gaz collectif + CET Collectif » arrivent à respecter l'exigence. Les variantes avec RCU sont proches de l'exigence sans jamais la respecter.

2.4. EN RESUME POUR LE TERTIAIRE

Indicateur Bbio :

- La prise en compte systématique des besoins de froid pour le calcul du Bbio a tendance à diminuer le gain sur le Bbio total de l'amélioration de l'enveloppe du bâtiment, en particulier dans les zones les plus chaudes ; en effet, l'amélioration du bâti s'accompagne dans le calcul d'une augmentation des besoins de froid qui contrebalance pour partie la diminution des besoins de chauffage

Indicateur DH:

- Différence très importante de DH calculée, à prestations identiques, entre les zones les plus septentrionales et méridionales. En conséquence, un seuil haut de DH uniforme sur l'ensemble des zones conduirait à :
 - Peu ou pas de contrainte dans les zones les moins chaudes : le seuil haut peut être respecté avec des prestations moins performantes que les pratiques courantes actuelles, alors que celles-ci ne permettent pas toujours elles-mêmes d'assurer un confort d'été suffisant
 - → Importance de bien caler les seuils de Bbio et Cep,nr pour ne pas permettre un relâchement des efforts sur le confort d'été / RT2012
 - Beaucoup de contraintes dans les zones les plus chaudes : le seuil haut ne peut être respecté qu'avec des prestations plus performantes que les pratiques courantes actuelles
 - → Importance de bien caler les seuils de Bbio et Cep,nr de façon à permettre la mise en place de la climatisation lorsque celle-ci est nécessaire
- Le seuil d'exigence Cep,nrmax devra être calé en considérant les bâtiments non climatisés dans les zones climatiques où le confort d'été pourrait être suffisant sans recours à la climatisation (a minima H2a) et en considérant les bâtiments climatisés dans les zones climatiques où un confort d'été suffisant ne saurait être atteint sans recours à la climatisation, même avec des dispositifs passifs de rafraichissement. La difficulté étant qu'au sein d'une même zone climatique, elle peut être superflue ou au contraire indispensable selon la localisation du projet. Exemple en H1a, où elle pourrait être nécessaire pour un bâtiment situé à Paris et superflue pour un bâtiment situé à proximité des côtes de la Manche.
 - A titre d'exemple, pour l'année 2020, les DJU de climatisation étaient de 202h au Havre (H1a), 523,8h à Paris (H1a) et 774,5h à Nice (H3) (source : Infoclimat), soit une différence plus importante entre 2 sites situés sur la même zone climatique (Le Havre et Paris) qu'entre 2 sites situés sur des zones climatiques très différentes (Paris et Nice). A noter qu'il n'y a plus en RE2020 la distinction « zone littorale » et « zone intérieure » qui existait en RT2012 et qui permettait un niveau de détail plus fin pour le confort d'été que la zone climatique seule.
- Moins de leviers en bâtiment climatisé pour diminuer les DH en raison de l'absence de prise en compte des brasseurs d'air ; attention, s'assurer que pour les zones les plus chaudes, le seuil haut de DH soit atteignable en bâtiment climatisé, sans quoi le risque pourrait être d'inciter à livrer des bâtiments non climatisés et de les climatiser après coup avec des systèmes peu performants.
- Le rafraichissement adiabatique permet une diminution drastique des DH sur l'ensemble des zones climatiques; n'étant pas une pratique très répandue actuellement, il faudra s'assurer que le gain théorique sur le confort d'été n'est pas surestimé par rapport au gain constaté sur le terrain.

3. DETAILS DE L'ETUDE

3.1. PRESENTATION

Le domaine d'étude comprend 4 usages et 6 bâtiments :

- Maison individuelle :
 - o 1 maison en 1N d'environ 89.49 m² de SHAB,
 - o 1 maison en R+C d'environ 100,9 m² de SHAB,
 - o 1 maison en R+1 d'environ 100,9 m² de SHAB.
- Immeuble collectif:
 - o 1 immeuble de 40 logements d'environ 2 120 m² de SHAB.
- Tertiaire :
 - o 1 bâtiment d'enseignement de 2785 m² de SU,
 - o 1 bâtiment de bureau de 4124 m² de SU.

Pour chaque typologie de bâtiment nous réaliserons les analyses suivantes :

1. Impact du changement de moteur de calcul RE 2020 : ancienne version R_346 – nouvelle version R_427 A partir des résultats de l'étude précédente nous regarderons les impacts de la nouvelle version du moteur de calcul RE 2020.

2. Analyse des résultats des variantes par rapport aux propositions de la DHUP :

Les résultats des variantes seront analysés <u>uniquement</u> pour la partie énergie au regard des propositions réalisées par la DHUP sur les indicateurs et les exigences de décembre 2020.

Liste des variantes étudiées :

- Des cas dit de base qui respectent la RT 2012,
- Des variantes dites « recherche de performance » (améliorations des performances par rapport aux cas de base RT 2012).

/!\: La partie carbone avec l'indicateur lc_{composant} n'a pas été analysée au regard des seuils proposés par manque de compatibilité des méthodes d'ACV entre la première étude et la méthode règlementaire RE 2020. La première étude a été commanditée avant le lancement de la concertation de juillet 2020, certains des choix retenus par les BET pour la réalisation des ACV étaient différents de ceux retenus dans la méthode de calcul. Certains lots ont été saisis de manière forfaitaire et non détaillée comme le demande la méthode ce qui rend les résultats inexploitables vis-à-vis des exigences proposées.

3. Analyse sur le confort d'été:

Différentes variantes sur le confort d'été sont analysées afin de connaître leurs sensibilités sur les DH, le Bfr (Bbio Froid) et le Cfr (Cep froid). Dans un second temps, les BET ont réalisé des combinaisons des variantes précédentes ayant un impact important sur l'amélioration du confort d'été.

3.2. NOTE D'AIDE A LA COMPREHENSION

Dans cette étude les bâtiments et variantes sont appelés :

- « MI » pour maison individuelle,
- « LC » pour logement collectif,

- « Base RT 2012 » sont les bâtiments qui respectent les exigences de la RT 2012,
- « Cep » ou « Bbio » sont les variantes dites « recherche de performance », avec des améliorations par rapport aux cas de base « RT 2012 ».

Les indicateurs sont exprimés dans les unités suivantes :

- Bbio en points,
- Cep en kWhEP/m².an,
- Cep, nr en kWhEP/m².an,
- Icénergie en kgeqCO₂ / m².an,
- Les Degrés Heures d'inconfort en °C,h.

Les seuils des indicateurs proposés par la DHUP en novembre 2020 :

Usage de la partie de bâtiment	Valeur de Bbio_maxmoyen
Maisons individuelles ou accolées	63 points
Logements collectifs	65 points

Usage de la partie de	Valeur de	Valeur de	Valeur de
bâtiment	Cep,nr_maxmoyen	Cep_maxmoyen	lcénergie_maxmoyen
Maisons individuelles ou accolées	55 kWhep/(m².an)	75 kWhep/(m².an)	160 kgCO2/m²
Logements collectifs	70 kWhep/(m².an)	85 kWhep/(m².an)	560 kgCO2/m²

En logement collectif l'indicateur lc_{énergie} max à 560 kgCO₂/m² s'applique de 2021 à 2024. A partir du 1^{er} janvier 2024 un renforcement de cet indicateur est proposé à 240 kgCO₂/m².

DHmax	1250 DH

Le déclenchement du forfait de pénalisation commence à partir de 350 DH.

3.3. LES HYPOTHESES RETENUES PAR BET

/!\Les approches de cette mise à jour d'étude sont différentes pour la MI et le tertiaire par rapport au LC.

Dans cette étude, il n'y a pas eu de recherche d'optimisation fine des coûts. Certains descriptifs techniques présentés seront à retravailler par les BET après les annonces officielles des seuils de la RE 2020, à la fois en terme de performance (amélioration ou dégradation) et de coûts.

- → Cette étude permet d'apporter une première approche sur les prestations techniques qui préfigurent la RE 2020 vis à vis des propositions d'exigences de la DHUP de novembre 2020.
- → La bibliothèque des ponts thermiques de l'étude est en annexe.

3.3.1. POUR LA MAISON INDIVIDUELLE

Le BET a réalisé une mise à jour de certaines variantes de l'étude précédente.

L'analyse porte sur trois typologies de maisons individuelles :

- MI R+C: maison individuelle avec combles aménagés,

11 mai 2021

- MI R+1: maison individuelle avec toiture terrasse,
- MI 1N: maison individuelle de plain-pied (avec des combles perdus).

Sur trois zones climatiques: H1a – H2b et H3.

Liste des systèmes de référence :

- Zone H1a: PAC Air/Eau 2 Services,
- Zone H2b: PAC Air/Eau 2 Services,
- Zone H3: PAC Air/Air monosplit + Effet Joule + CET.

Liste des variantes mises à jour :

- « Base RT 2012 » : respect des exigences de la RT 2012 (BbioMax, CepMax, Tic).
 - → Cette variante permet de situer les niveaux d'un bâtiment RT 2012 avec le moteur de calcul RE 2020.
- « Bbio max RT 2012 40 points » : respect de l'exigence Bbio max RT 2012 à 40 points,
 - → Cette variante se rapproche le plus de l'exigence Bbio max proposée par la DHUP sur l'indicateur Bbio.
- « Cep SR 20 % » : correspond à un niveau de performance calé avec l'ancien moteur de calcul RE 2020
 (R_346) : Cep projet RE2020 ≤ Cep (système représentatif) RE2020 20%.
 - → Cette variante correspond à un renforcement des performances de l'enveloppe par rapport à la variante « Bbio max RT 2012 40 points ». Par exemple, pour les MI R+C et 1N, en zone H1a et H2b, elle correspond à une résistance thermique moyenne en mur de 7 m².K/W (maçonnerie + isolant) contre une résistance thermique moyenne en mur de 4.6 m².K/W (maçonnerie + isolant) pour la variante « Bbio max RT 2012 40 points ».

Dans ce rapport d'étude seront majoritairement présentées les variantes « Base RT 2012 » et « Bbio max RT 2012 40 points ».

3.3.2. POUR LE LOGEMENT COLLECTIF

A partir d'un bâtiment « type RT 2012 » en zone H2b, le BET a :

- Définit des prestations techniques pour la zone H2b avec deux niveaux de performance « Bbio RT 2012 -30% » et « Bbiomax RT 2012 40% » et respect du seuil DH Max uniquement pour la zone H3. Il n'y a pas eu de calage avec les seuils Cep, nr max, Icénergie max.
- A partir des descriptifs techniques calés pour la zone H2b, le BET a regardé l'impact de la modification des zones climatiques (zone H1b et H3). Différents systèmes pour le Chauffage et l'Eau chaude sanitaire (ECS) seront également testées.

3.3.3. POUR LE TERTIAIRE

Le BET a réalisé une mise à jour de certaines variantes de l'étude précédente sur trois zones climatiques (H1a, H2b et H3).

L'analyse porte sur un bâtiment d'enseignement et un bâtiment de bureau avec trois niveaux de performances :

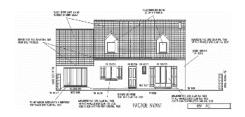
- « Base RT 2012 » : application de descriptifs techniques courants, à la différence du résidentiel, les prestations sont nettement supérieures aux exigences demandées dans la RT 2012.

- « Enveloppe Optimisée » : augmentation des performances de l'enveloppe,
- « Enveloppe + Système Optimisés » : augmentation des performances de l'enveloppe et ajout d'un système de refroidissement adiabatique.

Le bâtiment d'enseignement utilise pour le chauffage et l'ECS une chaudière gaz, le bâtiment de bureaux est lui climatisé et utiliser une PAC Air/Air pour les trois usages (Chauffage – ECS – Rafraichissement actif). Pour les variantes confort d'été, le bâtiment de bureau n'est pas climatisé afin d'évaluer la sensibilité de chaque variante.

3.4. LE CAHIER DES CHARGES DE L'ETUDE

3.4.1. LA MAISON INDIVIDUELLE


Les typologies de maisons individuelles :

■ Maison de plain-pied (1N) :

Maison avec combles aménagés (R+C) :

Maison avec toiture terrasse (R+1):

Pour les modèles de base et hors variante spécifique, les hypothèses de calculs sont prises comme suit :

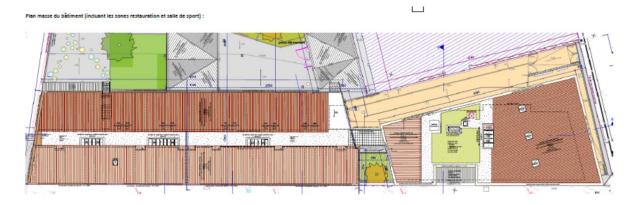
- Zones climatiques : H1a, H2b et H3

- Plancher bas:

- VS-SC Vide-sanitaire isolé sous chape (entrevous non-isolants)
- Modes constructifs :
 - Ventilation simple-flux Hygroréglable de type B avec réseau standard (par défaut);
 - Perméabilité = 0,6 ;
 - Orientation = moyenne;
 - Altitude < 400 m;
 - Aucun masque proche ou lointain.

Les descriptifs techniques des variantes seront présentés dans cette étude.

3.4.2. LE LOGEMENT COLLECTIF


	R+6
Descriptif	Plancher sur commerce (RDC)
	Toiture terrasse
SHAB (m²)	2 119
SRT (m²)	2 709
S vitrée (m²)	559,7 (26%)

Les descriptifs techniques des variantes seront présentés dans cette étude.

3.4.3. TERTIAIRE: ENSEIGNEMENT

Le bâtiment sur lequel les simulations sont réalisées est initialement composé de plusieurs zones : enseignement, restaurant, salle de sport et logement gardien au 2° étage. Pour les besoins de l'étude, les zones restaurant, salle de sport et logement gardien ont été supprimées afin de ne conserver que la zone enseignement.

DESCRIPTIF					
Usage	Enseignement primaire				
SU	2785				
Compacité (m² déperds/SU)	1,65 (peu compact)				
Nombre d'élèves	540				

3.4.4. TERTIAIRE : BUREAU

Bureaux		
	R+4	
Descriptif	Plancher sur parking souterrain	
	Toiture terrasse	
S. utile (m²)	4124	
SRT (m²)	4537	
S. vitrée (m²)	822 m² (35%)	
Mode	Béton + ITE	
constructif	BELOIT TITE	

4. ANALYSE DES RESULTATS PAR TYPOLOGIE : MAISON INDIVIDUELLE

4.1. L'IMPACT DE L'EVOLUTION DU MOTEUR DE CALCUL RE 2020 (VERSION R_346 -> R_427)

Illustration de l'impact de l'évolution du moteur de calcul entre le moteur R_346 de juin 2020 et R_427 de novembre 2020. Les impacts de la modification de moteur est similaire pour l'ensemble des MI étudiées, nous présenterons uniquement l'évolution pour la MI R+C sur les indicateurs : Bbio, Cep, nr et DH.

Sur l'indicateur Bbio :

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur Bbio et sa décomposition pour la MI R+C sur trois zones climatiques avec un niveau de performance « RT 2012 » avec les moteurs RT 2012 – RE 2020 R_346 et RE 2020 R_427.

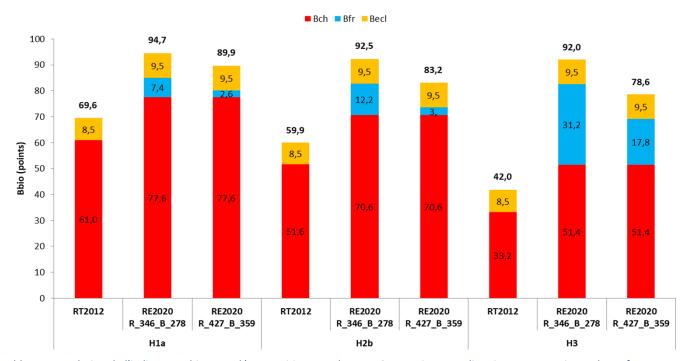


Tableau 1 : Evolution de l'indicateur Bbio et sa décomposition pour la MI R+C sur trois zones climatiques avec 1 niveau de performance « RT 2012 » et trois moteurs de calcul : le moteur RT 2012 – le moteur RE 2020 R_346 et le moteur RE 2020 R_427.

Analyse:

- Le changement de moteur de calcul entre RT 2012 et RE 2020 fait augmenter le Bbio (voir explications précédente étude du consortium sur la RE 2020).
- Le changement de moteur de calcul RE 2020 fait baisser l'indicateur Bbio entre le moteur R 346 et R 427 :
 - Le Bch et Becl sont identiques avec les deux moteurs RE 2020,
 - Le Bfr est diminué entre les deux versions du moteur RE 2020, avec la modification de la méthode pour les bâtiments non climatisés sur l'autorisation de l'ouverture des baies pour le rafraîchissement nocturne (moteur R 427).

Illustration pour les variantes « RT 2012 » :

- o H1a: Bbio moteur R_427 Bbio moteur R_346 = baisse de -4.8 points,
- o H2b: Bbio moteur R 427 Bbio moteur R 346 = baisse de -9.2 points,
- H3: Bbio moteur R_427 Bbio moteur R_346 = baisse de 13.4 points.

- → Nous saluons l'évolution de la méthode de calcul du Bfr entre les deux versions de moteur de calcul. En effet, avec l'ancien moteur de calcul RE 2020 les valeurs de Bfr conduisaient à donner une place prépondérante aux besoins et consommations de froid en logement, contrairement aux constats réels terrain, surévaluant l'indicateur Bbio. Les calculs étaient réalisés fenêtres fermées la nuit en été dans tous les logements, neutralisant ainsi toutes les solutions passives de valorisation de la fraîcheur nocturne et augmentant artificiellement les besoins de froid rendant le Bfr très peu optimisable.
- → Cette modification de la méthode fait qu'il n'est donc pas possible de comparer les résultats entre la première étude et cette mise à jour.

Sur l'indicateur Cep, nr et DH :

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur Cep, nr et sa décomposition et l'indicateur DH (lecture sur l'axe du bas) pour la MI R+C sur trois zones climatiques avec un niveau de performance « RT2012 » avec les moteurs RT 2012 – RE 2020 R_346 et RE 2020 R_427.

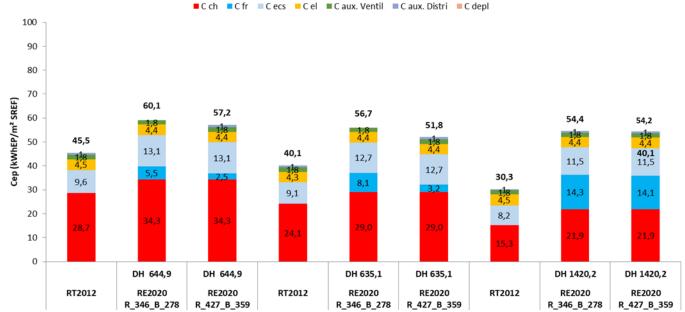


Tableau 2 : Evolution de l'indicateur Cep, nr et DH pour la Maison R+C sur trois zones climatiques — niveau de performance « RT 2012 » entre le moteur RT 2012 — le moteur RE 2020 R_346 et le moteur RE 2020 R_427 .

Analyse :

- Le changement de moteur de calcul entre RT 2012 et RE 2020 fait augmenter le Cep, nr (voir explications précédente étude du consortium sur la RE 2020).
- DH: les DH sont identiques entre les deux versions de moteur de calcul,
- Cep, nr : la modification de moteur de calcul RE 2020 fait baisser uniquement le Cfr entre le moteur R_346 et R 427, les autres composants du Cep, nr sont identiques entre les deux versions de moteur RE 2020,
- Le Cfr est maintenant calculé pour les logements non climatisés par rapport au nombre de DH du projet alors qu'avec le moteur précédent le Cfr était calculé par rapport au Bfr :
 - H1a: Cep, nr moteur R_427 Cep, nr moteur R_346 = baisse de -3 kWhEP/m².an,
 - H2b: Cep, nr moteur R_427 Cep, nr moteur R_346 = baisse de -4.9 kWhEP/m².an,
 - O H3: Cep, nr moteur R 427 Cep, nr moteur R 346 = baisse de -0.2 kWhEP/m².an.
- → Nous saluons la modification de la méthode de calcul du Cfr pour les bâtiments non climatisés. Elle est maintenant réalisée en fonction du nombre de DH du projet. Ce nouveau calcul permet d'annuler l'effet de seuil de l'ancienne méthode entre un bâtiment avec 349 DH et un bâtiment avec 351 DH. De plus, cette

modification doit permettre d'assurer une meilleure lisibilité pour les concepteurs et BET du forfait de pénalisation par rapport à l'ancienne méthode (liée au Bfr).

4.2. ANALYSE DES RESULTATS PAR RAPPORTS AUX EXIGENCES PROPOSEES

Analyse sur l'exigence Bbiomax :

Comment lire ce tableau : ce tableau présente les résultats de l'indicateur Bbio (colonne Bbio RE 20202) pour la variante « Base RT 2012 » – cette variante a été modélisée avec le moteur RT 2012 pour s'assurer du respect de l'exigence Bbio max RT 2012 (voir colonne gain sur Bbiomax RT 2012 pour connaître la différence entre le Bbioprojet et le Bbiomax RT 2012 avec le moteur de calcul RT 2012). La colonne variation Bbio RE 2020 par rapport au Bbio max RE 2020 permet de mesurer la variation entre le Bbio des cas de base dans le moteur RE 2020 qui respectent l'exigence Bbiomax RT 2012 et l'exigence de Bbio max proposée dans le cadre de la RE 2020.

Type de MI	Zone climatique	Chauffage + ECS	Type de Variante	Bbio RT 2012	Bbiomax RT 2012	Gain sur Bbio Max RT 2012	Bbio RE 2020 (points)	Bbiomax RE 2020	Variation Bbio RE 2020 / Bbiomax RE 2020
	H1a	PAC Air/Eau 2 services	Base RT2012	71,2	72,1	-1%	94,7	69,1	-27%
1N	H2b	PAC Air/Eau 2 services	Base RT2012	59,7	60,1	-1%	85,9	59,6	-31%
	Н3	PAC Air/Air monosplit + Effet Joule + CET	Base RT2012	41,4	42,1	-2%	79,1	53,3	-33%
R+1	H1a	PAC Air/Eau 2 services	Base RT2012	69,7	72	-3%	95,5	67,8	-29%
	H2b	PAC Air/Eau 2 services	Base RT2012	59,3	60	-1%	90,2	58,4	-35%
	H3	PAC Air/Air monosplit + Effet Joule + CET	Base RT2012	41,6	42	-1%	89,3	52,1	-42%
R+C	H1a	PAC Air/Eau 2 services	Base RT2012	69,6	72,5	-4%	89,9	71,9	-20%
	H2b	PAC Air/Eau 2 services	Base RT2012	59,9	60,5	-1%	83,2	62,4	-25%
	H3	PAC Air/Air monosplit + Effet Joule + CET	Base RT2012	39,6	42,5	-7%	76,5	56,1	-27%

Figure 1 : Présentation pour les trois MI de l'étude sur trois zones climatiques des résultats de l'indicateur Bbio pour des cas de base qui respectent l'exigence Bbio max RT 2012 et transposés dans le moteur RE 2020.

Constats:

- En RT 2012, les exigences sur le Bbiomax toutes MI et zones climatiques confondues sont très proches ce qui n'est pas le cas en RE 2020 du fait du coefficient de modulation sur la surface Mbsurf pour la MI R+1 et du coefficient de modulation des combles aménagés Mbcombles pour la MI R+C.
- En RE 2020, on constate que le coefficient Mbcombles permet de corriger le biais pour les maisons à combles aménagés (R+C), il permet de supprimer la pénalisation induite par la RT 2012 pour cette typologie qui consistait à ne pas prendre en compte dans les volumes chauffés ceux de moins de 1,8 m de hauteur sous plafond.

- MI 1N et la MI R+C :

- Les exigences « Bbiomax RE2020 » sont les seuils modulés de l'indicateur Bbio suite aux propositions de la DHUP de décembre 2020.
- → Nous pouvons en conclure que pour ces deux MI, l'exigence proposée « Bbiomax RE 2020 » correspond bien à un « Bbiomax RT 2012 -30 % », avec dans certains cas des écarts légèrement inférieures ou supérieures.
 - Pour la zone H3 les bâtiments n'ont pas été optimisé pour améliorer le confort d'été, ce point sera détaillé dans la suite du rapport.

- MI R+1:

- En zone H1a, l'exigence est de -29% entre le « Bbio RE 2020 » et le « Bbiomax RE 2020 », donc très proche des -30% proposés par la DHUP.
- Des questions se posent vis-à-vis de l'exigence de Bbiomax pour les zones climatiques H2b et H3 pour cette typologie de MI.

Analyse sur l'exigence Cep, nr Max :

Comment lire ce tableau : ce tableau présente les résultats avec le moteur RT 2012 et le moteur R_427 RE 2020 de l'indicateur Cep et Cep, nr pour les variantes « Base RT 2012 » qui respectent les exigences de la RT 2012.

Typologie	Zone Climatique	Variantes	Systèmes (Chauffage + ECS)	Cep RT 2012 kWhEP/m².an	CepMax RT 2012 kWhEP/m².an	Gain sur Cepmax RT 2012	Cep,nr RE 2020 (kWhEP/m².an)	Cep,nrMax RE 2020 (kWhEP/m².an)
	H1a	Base RT2012	PAC Air/Eau 2 services	41,8	60,1	30%	56,2	55,2
1N	H2b	Base RT2012	PAC Air/Eau 2 services	36,2	50,1	28%	48,3	49,7
	H3	Base RT2012	PAC Air/Air monosplit + Effet Joule + CET	39,2	40,1	2%	65,3	35,9
	H1a	Base RT2012	PAC Air/Eau 2 services	41,3	60	31%	57,0	53,5
R+1	H2b	Base RT2012	PAC Air/Eau 2 services	35,6	50	29%	49,1	48,0
	H3	Base RT2012	PAC Air/Air monosplit + Effet Joule + CET	37,8	40	6%	63,9	34,2
	H1a	Base RT2012	PAC Air/Eau 2 services	45,5	60,5	25%	57,2	57,5
R+C	H2b	Base RT2012	PAC Air/Eau 2 services	40,1	50,5	21%	51,8	52,0
	H3	Base RT2012	PAC Air/Air monosplit + Effet Joule + CET	40,3	40,5	0%	63,9	38,2
	Н3	Base RT2012	PAC Air/Eau 2 services	30,3	40,5	25%	51,3	38,2

Figure 2 : Présentation pour les trois MI de l'étude sur trois zones climatiques des résultats de l'indicateur Cep, nr pour des cas de base qui respectent l'exigence Bbio max RT 2012 et transposés dans le moteur RE 2020.

Constats:

- En RT 2012, les exigences sur le Cepmax toutes MI et zones climatiques confondues sont très proches ce qui n'est pas le cas en RE 2020 du fait du coefficient de modulation sur la surface Mcsurf pour la MI R+1 et du coefficient de modulation des combles aménagés Mccombles pour la MI R+C.
- En RE 2020, l'introduction du coefficient Mccombles pour les maisons à combles aménagés (R+C) permet de supprimer la pénalisation induite par la RT 2012 pour cette typologie, qui consistait à ne pas prendre en compte dans les volumes chauffés ceux de moins de 1,8 m de hauteur sous plafond.
- En RE2020, les exigences « Cep, nr Max RE 2020 » sont différentes entre la MI 1N et la MI R+1.
 La MI R+1 a une SHAB de 107 m² contre 99 m² pour la MI 1N, il s'applique dans le calcul du Cep, nr max une modulation différente entre les deux MI via le coefficient Mcsurf.
- En RE 2020, en zone H1a et H2b, sans respecter l'exigence Bbio max, on constate que les solutions avec « PAC Air / Eau » ne sont pas contraintes pas l'indicateur Cep, nr max. En effet avec des bâti RT 2012, ces solutions permettent d'être proche de l'exigence RE 2020.
- → L'indicateur Bbio sera donc dimensionnant pour ces variantes avec PAC Air / Eau.
- Zone H3: en RT 2012 l'ensemble des variantes respectent l'exigence Cepmax, en RE 2020, avec l'ajout du Cfr, elles dépassent très fortement l'exigence Cep, nr Max ce qui n'est pas le cas pour les zones climatiques H1a et H2b.
- → En zone H3 l'exigence Cep, nr max apparait comme très contraignante.

4.3. PRESENTATION DES RESULTATS POUR LA MI DE PLAIN-PIED (1N)

4.3.1. VISION D'ENSEMBLE

Comment lire ce graphique : ce graphique présente, pour la MI de plain-pied sur trois zones climatiques, les résultats des variantes « Base RT 2012 », qui respectent les exigences de la RT 2012 et des variantes « Bbio Max RT 2012 40 points » qui dans cette étude s'approchent le plus de l'exigence Bbio max RE 2020 proposé par la DHUP en décembre 2020. Les indicateurs Bbio, Cep, nr se lisent sur l'axe de gauche, l'indicateur DH et Icénerale sur l'axe de droite.

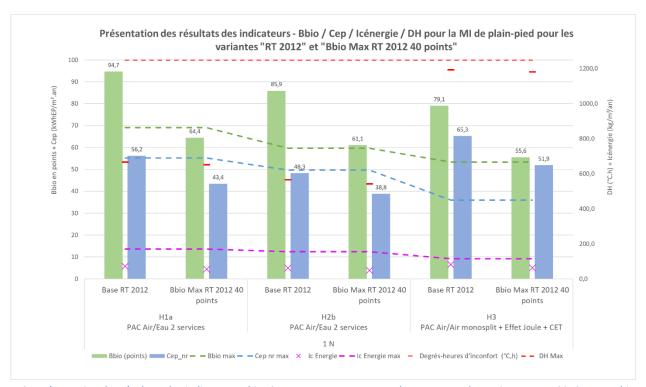


Figure 3 : Présentation des résultats des indicateurs Bbio, Cep, nr, Icénergie et DH pour la MI 1N pour les variantes « RT 2012 » et « Bbio Max RT 2012 40 points ».

Constats:

Rappel : Les maisons étudiées n'ont pas été optimisées vis-à-vis du confort d'été,

- En zone H1a: la variante « Bbiomax RT 2012 40 points » respecte les 4 exigences: Bbio max, Cep, nr max,
 Icénergie max et DHmax,
- En zone H2b:
 - La variante « Bbiomax RT 2012 40 points » respecte les 3 exigences : Cep, nr max, Icénergie max et DHmax,
 - o L'exigence Bbio max n'est pas respectée mais la variante est proche du seuil.
- En zone H3:
 - o La variante « Bbiomax RT 2012 40 points » respecte les 2 exigences : Icénergie max et DHmax,
 - o Les exigences Bbio max, Cep, nr max ne sont pas respectées.

4.3.2. DESCRIPTIF TECHNIQUE

Comment lire ce tableau: Ce tableau présente l'évolution du descriptif technique réalisé par le BET entre le cas de base « RT 2012 » et la variante « Bbiomax RT 2012 40 points » pour la MI R+C sur trois zones climatiques. Si une cellule est fusionnée entre les deux variantes cela signifie qu'il n'y a pas eu de modification entre les deux cas. Les cellules en orange montrent des niveaux de performance inférieures aux incitations à la rénovation (MaPrimeRénov' – CEE...).

Typologie			MI Plain-p	ied (1N)					
Zone climatique	H1	a	H	2b	H3				
Type de Variante	Base RT 2012	Bbiomax RT 2012 40 pts	Base RT 2012	Bbiomax RT 2012 40 pts	Base RT 2012	Bbiomax RT 2012 40 pts			
Altitude			[0;40	00m]					
Structure			Maçon	nerie					
Chauffage + ECS	PAC Air/Eau	PAC Air/Eau 2 services PAC Air/Eau 2 services PAC Air/Air monosplit + Effet + CET							
Murs extérieurs et Murs sur locaux non chauffés	U _{paroi} = 0,27 W/(m ² .K) (R _{paroi} = 3,15 m2.K/W)	U _{paroi} = 0,20 W/(m².K) (R _{paroi} = 4,55 m2.K/W)	U _{paroi} = 0,27 W/(m ² .K) (R _{paroi} = 3,15 m2.K/W)	U _{paroi} = 0,20 W/(m ² .K) (R _{paroi} = 4,55 m2.K/W)	U _{paroi} = 0,27 W/(m ² .K) (R _{paroi} = 3,15 m2.K/W)	U _{paroi} = 0,20 W/(m².K) (R _{paroi} = 4,55 m2.K/W)			
Toiture combles perdus	$U_{paroi} = 0,14$ $W/(m^2.K)$ $(R_{paroi} = 8$ $m2.K/W)$	$U_{paroi} = 0,12$ W/(m ² .K) (R _{paroi} = 10 m2.K/W)	U _{paroi} = 0,13 W/(m ² .K) (R _{paroi} = 9 m2.K/W)	U _{paroi} = 0,12 W/(m ² .K) (R _{paroi} = 10 m2.K/W)	U _{paroi} = 0,12 (R _{paroi} = 10 t				
Plancher sur Vide Sanitaire Isolation sous chape	$U_{paroi} = 0.33$ $W/(m^2.K)$ $(R_{paroi} = 2.6$ $m2.K/W)$	$U_{paroi} = 0,17$ $W/(m^2.K)$ $(R_{paroi} = 5,5$ $m2.K/W)$	$U_{paroi} = 0.33$ $W/(m^2.K)$ $(R_{paroi} = 2.6$ m2.K/W)	$U_{paroi} = 0,17$ $W/(m^{2}.K)$ $(R_{paroi} = 5,5$ $m2.K/W)$	U _{paroi} = 0,55 W/(m ² .K) (R _{paroi} = 1,35 m2.K/W)	U _{paroi} = 0,19 W/(m².K) (R _{paroi} = 4,65 m2.K/W)			
Uw _{moyen} en W/m².K	1,40 sauf baie vitrée 1,60	1,30 Sauf baie vitrée 1,40	1,40 sauf baie vitrée 1,60	1,30 Sauf baie vitrée 1,40	1,30 sauf baie	vitrée 1,40			
Coffre Vr	Uc = 2,00 W/m ² .K	Uc = 0,50 W/m ² .K	Uc = 2,00 W/m ² .K	Uc = 0,50 W/m ² .K	Uc = 0,90 \	W/m².K			
Type de protections mobiles	Volet roulant								
Gestion des protections mobiles		Gestion motorisée							
Perméabilité à l'air			0,6	5					

Tableau 3 : Présentation des descriptifs techniques pour la MI 1N pour les variantes « RT 2012 » et « Bbio Max RT 2012 40 points ».

Constats:

- Dans les variantes « Base RT 2012 » les performances des cellules en orange ne respectent pas les exigences minimales des aides à la rénovation (MaPrimeRénov', CEE...),
- Logiquement, on constate une augmentation de la performance de l'enveloppe pour les variantes « Bbio max RT 2012 40 points » par rapport aux variantes « Base RT 2012 ».
- → Les niveaux de performances pour la variante « Bbiomax RT 2012 40 points » sont des performances avec des solutions techniques présentent sur le marché et accessibles sans aucune rupture technologique.

4.3.3. **ANALYSE SUR L'INDICATEUR BBIO**

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur Bbio et sa décomposition pour la variante « Bbio Rt 2012 40 points » pour la maison de plain-pied sur trois zones climatiques avec le moteur de calcul RE 2020 R_427 de novembre 2020. La ligne rouge avec des pointillés présente le Bbio max RE 2020 en appliquant la formule issue des textes en consultation pour le CSCEE de décembre 2020 avec un Bbio max de 63 points et en appliquant les modulations.

> Comparaison de l'évolution de l'indicateur Bbio pour la maison de plain-pied (1N) entre les variantes Respect de la RT 2012 et Bbiomax RT 2012 40 points sur trois zones climatiques avec les

Figure 4: Comparaison de l'indicateur Bbio pour la MI 1N entre la variante « Base RT 2012 » et « Bbiomax RT 2012 40 points »

Constats:

- Par rapport à l'exigence Bbiomax :
 - L'exigence est respectée en zone H1a avec -4.7 points par rapport au Bbiomax,
 - → Possibilité pour le BET de dégrader les performances pour se rapprocher du niveau Bbiomax.
 - L'exigence n'est pas respectée :
 - En zone H2b: +1.5 points par rapport au Bbiomax,
 - En zone H3: +2.3 points par rapport au Bbiomax Le Bfr devra être optimisé pour respecter l'exigence.

Sur la décomposition du Bbio:

Comment lire ce tableau : ce tableau présente les résultats de l'indicateur Bbio et sa décomposition en % pour les variantes « Base RT 2012 » et « Bbio max RT 2012 40 points » avec le moteur de calcul RE 2020 R 427.

Type	Zone climatique	Variante	Bbio (points)	Bch (%)	Bfr (%)	Becl (%)
	H1b	Base RT 2012	94,6	87%	2%	11%
	пто	Bbio max RT 2012 40 points	64,4	81%	3%	16%
1N	H2b	Base RT 2012	85,8	86%	3%	12%
TIN	HZU	Bbio max RT 2012 40 points	61	80%	4%	16%
	H3	Base RT 2012	79,2	67%	20%	13%
	пэ	Bbio max RT 2012 40 points	55,8	56%	27%	18%

Tableau 4 : Présentation de l'indicateur Bbio et de sa décomposition pour les variantes Base RT 2012 et Bbio RT 2012 40 points avec le moteur RE 2020 R 427

→ La part de Bfr est faible en zone H1a et H2b, en zone H3 elle représente presque 1/3 du Bbio projet.

23 11 mai 2021

4.3.4. ANALYSE SUR L'INDICATEUR CEP, NR ET DH

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur DH et Cep, nr avec sa décomposition pour la variante « Bbio Rt 2012 40 points » pour la maison à 1N sur trois zones climatiques avec le moteur de calcul RE 2020 R_427 de novembre 2020. La ligne bleu avec des pointillés présente le Cep, nr max RE 2020 en appliquant la formule issue des textes en consultation pour le CSCEE de décembre 2020 en appliquant les modulations, la ligne rouge en pointillés présente le seuil de DH max (1250 DH).

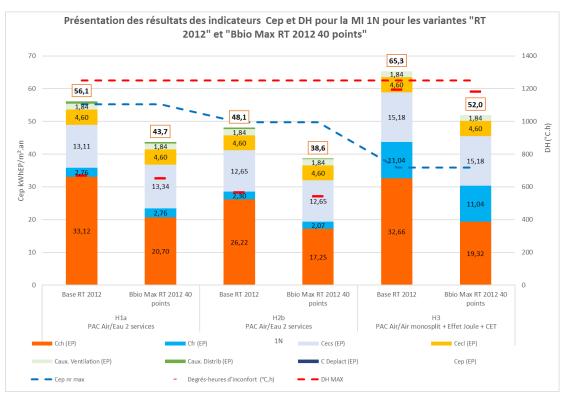


Figure 5 : Présentation des résultats des indicateurs Cep, nr et sa décomposition et DH pour la MI 1N pour les variantes « RT 2012 » et « Bbio Max RT 2012 40 points ».

Constats:

- Par rapport à l'exigence Cep, nr :
 - L'exigence est facilement respectée en zone H1a et H2b pour la variante « Bbiomax RT 2012 40 points »,
 - L'exigence n'est pas respectée en zone H3, l'atteinte de l'exigence Cep, nr Max en zone H3 sera détaillée dans la suite de l'étude (§ 4.7.5). Si l'on considère le Cfr à 0 (soit DH_{projet} < à 350 DH) pour la variante « Bbio Max RT 2012 40 points » l'exigence sur le Cep, nr max ne sera toujours pas atteinte.
- Par rapport à l'exigence DH max : l'ensemble des variantes sont inférieures à l'exigence DH Max à 1250 DH.

Sur la décomposition du Cep, nr :

Comment lire ce tableau : ce tableau présente les résultats de l'indicateur Cep, nr et sa décomposition en % pour les variantes « Base RT 2012 » et « Bbio max RT 2012 40 points » avec le moteur de calcul RE 2020 R 427.

Type de MI	Zone climatique	Variante	Cep (kWhEP/m².an)	Cch (%)	Cfr (%)	Cecs (%)	Cecl (%)	Caux. Ventilation (%)	Caux. Distrib (%)	C Deplact (%)
	H1b	Base RT 2012	56,12	59%	5%	23%	8%	3%	1%	0%
	птр	Bbio max RT 2012 40 points	43,70	47%	6%	31%	11%	4%	1%	0%
1N	H2b	Base RT 2012	48,07	55%	5%	26%	10%	4%	1%	0%
TIN	ПZD	Bbio max RT 2012 40 points	38,64	45%	5%	33%	12%	5%	1%	0%
	H3	Base RT 2012	65,32	50%	17%	23%	7%	3%	0%	0%
	пэ	Bbio max RT 2012 40 points	51,98	37%	21%	29%	9%	4%	0%	0%

Tableau 5 : Présentation de l'indicateur Cep, nr et de sa décomposition pour les variantes Base RT 2012 et Bbio RT 2012 40 points avec le moteur RE 2020 R 427

→ La part du Cfr est faible en zone H1a et H2b, en zone H3 elle représente 21 % du Cep, nr la variante « Bbio max RT 2012 40 points ».

4.3.5. ANALYSE SUR L'INDICATEUR ICENERGIE

Comment lire ce tableau : ce tableau présente le résultat de l'indicateur IC_{énergie} pour la maison 1N ainsi que le niveau Ic_{énergie}max et la variation de l'indicateur entre la variante « Base RT 2012 » et la variante « Bbiomax RT 2012 40 points ».

			Ic Energie (kg. Eq. CO2)	Ic Energie max Ic Energie (kg. Eq. CO2)	Variation entre RT 2012 et Bbiomax RT 2012 40 points (kg. Eq. CO2)
	H1a	Base RT 2012	72	171	17
	PAC Air/Eau 2 services	Bbio Max RT 2012 40 points	55	171	17
1N	H2b	Base RT 2012	61	155	- 13
TIN	PAC Air/Eau 2 services	Bbio Max RT 2012 40 points	48	155	15
	H3	Base RT 2012	83	115	19
	PAC Air/Air monosplit + Effet Joule +	Bbio Max RT 2012 40 points	64	115	19

Tableau 6 : Présentation des résultats des indicateurs Icénergie et Icénergie max pour la MI 1N pour les variantes « RT 2012 » et « Bbio Max RT 2012 40 points ».

Constats:

- L'ensemble des variantes sont nettement inférieures au seuil Icénergie max,
- Le renforcement des exigences sur l'enveloppe permet une baisse de l'indicateur Icénergie.

4.4. PRESENTATION DES RESULTATS POUR LA MI AVEC COMBLES AMENAGES (R+C)

4.4.1. VISION D'ENSEMBLE

Comment lire ce graphique : ce graphique présente, pour la MI à combles aménagés sur trois zones climatiques, les résultats des variantes « Base RT 2012 », qui respectent les exigences de la RT 2012 et des variantes « Bbio Max RT 2012 40 points » qui dans cette étude s'approchent le plus de l'exigence Bbio max RE 2020 proposé par la DHUP en novembre 2020. Les indicateurs Bbio, le Cep, nr se lisent sur l'axe de gauche, l'indicateur DH et Icénergie sur l'axe de droite.

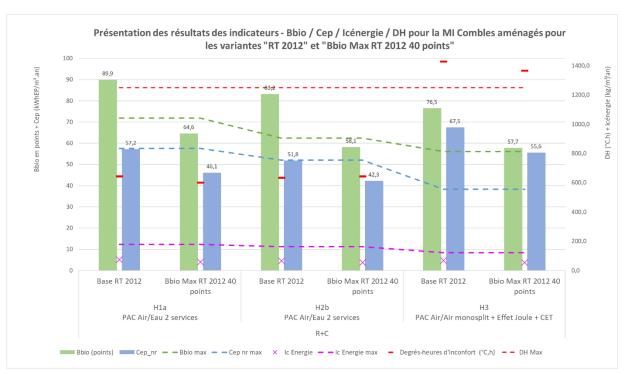


Figure 6 : Présentation des résultats des indicateurs Bbio, Cep, nr, $Ic_{\acute{e}nergie}$ et DH pour la MI R+C pour les variantes « RT 2012 » et « Bbio Max RT 2012 40 points ».

Constats:

Rappel: Les maisons étudiées n'ont pas été optimisée vis-à-vis du confort d'été,

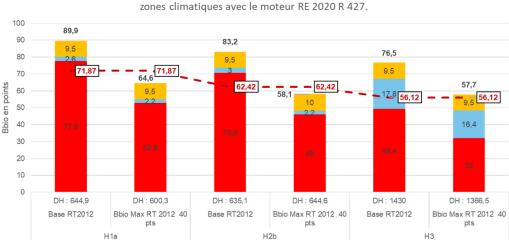
- En zone H1a et H2b : la variante « Bbiomax RT 2012 40 points » respecte les 4 exigences : Bbio max, Cep, nr max, Icénergie max et DHmax,
- En zone H3:
 - La variante « Bbiomax RT 2012 40 points » respecte les 2 exigences : Icénergie max et DHmax,
 - o Les exigences Bbio max, Cep, nr max ne sont pas respectées.

4.4.2. DESCRIPTIF TECHNIQUE

Comment lire ce tableau: Ce tableau présente l'évolution du descriptif technique réalisé par le BET entre le cas de base « RT 2012 » et la variante « Bbiomax RT 2012 40 points » pour la MI R+C sur trois zones climatiques. Si une cellule est fusionnée entre les deux variantes cela signifie qu'il n'y a pas eu de modification entre les deux cas. Les cellules en orange montrent des niveaux de performance inférieures aux incitations à la rénovation (MaPrimeRénov' – CEE...).

Nom bâtiment	novation (Mariineke	,	Combles	s aménagés		
Zone climatique	H:	1a	H	2b	H	3
Structure			Maç	onnerie		
Chauffage + ECS		PAC Air/Ea	u 2 services		PAC Air/Air monospli	t + Effet Joule + CET
Type de Variante	Base RT2012	Bbio Max RT 2012 40 points	Base RT2012	Bbio Max RT 2012 40 points	Base RT2012	Bbio Max RT 2012 40 points
Murs Extérieurs et murs sur locaux non chauffés	$U_{paroi} = 0,27$ $W/(m^2.K)$ $(R_{paroi} = 3,15$ m2.K/W)	$U_{paroi} = 0,20$ $W/(m^2.K)$ $(R_{paroi} = 4,6$ $m2.K/W)$	K) W/(m².K) W/(m².K) 4,6 (R _{paroi} = 3,15 (R _{paroi} = 4,6		U _{paroi} = 0,27 W/(m².K) (R _{paroi} = 3,15 m2.K/W)	$U_{paroi} = 0,20$ $W/(m^2.K)$ $(R_{paroi} = 4,55$ $m2.K/W)$
Combles Aménagés	$U_{paroi} = 0,14$ $W/(m^2.K)$ $(R_{paroi} = 8$ $m2.K/W)$	$U_{paroi} = 0,12$ $W/(m^2.K)$ $(R_{paroi} = 10$ $m2.K/W)$	U _{paroi} = 0,14 W/(m².K) (R _{paroi} = 8 m2.K/W)	$U_{paroi} = 0,12$ $W/(m^2.K)$ $(R_{paroi} = 10$ $m2.K/W)$	U _{paroi} = 0,13 W/(m².K) (R _{paroi} = 9 m2.K/W)	$U_{paroi} = 0,12$ $W/(m^2.K)$ $(R_{paroi} = 10$ m2.K/W)
Plancher sur Vide Sanitaire	$U_{paroi} = 0,33$ $W/(m^2.K)$ $(R_{paroi} = 2,6$ $m2.K/W)$	$U_{paroi} = 0,17$ $W/(m^2.K)$ $(R_{paroi} = 5,5$ $m2.K/W)$	$U_{paroi} = 0,33$ $W/(m^2.K)$ $(R_{paroi} = 2,6$ $m2.K/W)$	$U_{paroi} = 0,17$ $W/(m^{2}.K)$ $(R_{paroi} = 5,5$ $m2.K/W)$	$U_{paroi} = 0,55$ W/(m ² .K) $(R_{paroi} = 1,35$ m2.K/W)	$U_{paroi} = 0,19$ W/(m ² .K) (R _{paroi} = 4,65 m2.K/W)
Uw _{moyen} W/(m².K)	1,40 sauf baie vitrée 1,60	1,30 sauf baie vitrée 1,40	1,40 sauf baie vitrée 1,60	1,30 sauf baie vitrée 1,40	1,40 sauf baie vitrée 1,60	1,30 sauf baie vitrée 1,40
Type de protection mobile			Volet	roulant		
Gestion des protections mobiles	Gestion manuelle Gestion motorisée Gestion manuelle Gesti					
Coffre Vr	Uc 0,90 W/m².K	Uc 0,50 W/m².K	Uc 0,90 W/m².K	Uc 0,50 W/m².K	Uc 0,90 W/m².K	Uc 0,50 W/m².K
Perméabilité à l'air				0,6		

Tableau 7: Présentation des descriptifs techniques pour la MI R+C pour les variantes « RT 2012 » et « Bbio Max RT 2012 40 points ».


Analyse:

- Dans les variantes « Base RT 2012 » les performances des cellules en orange ne respectent pas les exigences minimales des aides à la rénovation (MaPrimeRénov', CEE...),
- Logiquement, on constate une augmentation de la performance de l'enveloppe pour les variantes « Bbio max RT 2012 40 points » par rapport aux variantes « Base RT 2012 ».
- Les niveaux de performances pour la variante « Bbiomax RT 2012 40 points » sont des performances avec des solutions techniques présentent sur le marché et accessibles sans aucune rupture technologique.

4.4.3. **ANALYSE SUR L'INDICATEUR BBIO**

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur Bbio et sa décomposition pour la variante « Bbio Rt 2012 40 points » pour la maison à combles aménagés sur trois zones climatiques avec le moteur de calcul RE 2020 R_427 de novembre 2020. La ligne rouge avec des pointillés présente le Bbio max RE 2020 en appliquant la formule issue des textes en consultation pour le CSCEE de décembre 2020 avec un Bbio max de 63 points et en appliquant les modulations.

> Comparaison de l'évolution de l'indicateur Bbio pour la maison combles aménagés (R+C) entre les variantes "Respect de la RT 2012" et "Bbiomax RT 2012 40 points" sur trois

Н1а

Figure 7: Comparaison de l'indicateur Bbio pour la MI R+C entre la variante « Base RT 2012 » et « Bbiomax RT 2012 40 points »

Constats:

- Par rapport à l'exigence Bbiomax :
 - L'exigence est respectée en zone H1a avec -7.2 points par rapport au Bbiomax,

Becl (points)

Bfr (points)

- L'exigence est respectée en zone H1b avec -4.3 points par rapport au Bbiomax,
 - → Possibilité pour le BET de dégrader les performances pour se rapprocher du niveau Bbiomax.

Bbio (points)

- L'exigence n'est pas respectée :
 - En zone H3: +1.6 points par rapport au Bbiomax Le Bfr devra être optimisé pour respecter l'exigence.

Décomposition du Bbio :

Comment lire ce tableau : ce tableau présente les résultats de l'indicateur Bbio et sa décomposition en % pour les variantes « Base RT 2012 » et « Bbio max RT 2012 40 points » avec le moteur de calcul RE 2020 R_427.

Type de MI	Zone climatique	Variante	Bbio (points)	Bch (%)	Bfr (%)	Becl (%)
	H1b	Base RT 2012	89,7	87%	3%	11%
	НТО	Bbio max RT 2012 40 points	64,5	82%	3%	15%
R+C	H2b	Base RT 2012	83,1	85%	4%	11%
NTC		Bbio max RT 2012 40 points	58,2	79%	4%	17%
	Н3	Base RT 2012	76,7	64%	23%	12%
	ПЭ	Bbio max RT 2012 40 points	57,9	55%	28%	16%

Tableau 8 : Présentation de l'indicateur Bbio et de sa décomposition pour les variantes Base RT 2012 et Bbio RT 2012 40 points avec le moteur RE 2020 R 427

→ La part de Bfr est faible en zone H1a et H2b, en zone H3 elle représente presque 1/3 du Bbio projet.

28 11 mai 2021

4.4.4. ANALYSE SUR L'INDICATEUR CEP, NR ET DH

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur DH et Cep, nr avec sa décomposition pour la variante « Bbio Rt 2012 40 points » pour la maison à combles aménagés sur trois zones climatiques avec le moteur de calcul RE 2020 R_427 de novembre 2020. La ligne bleu avec des pointillés présente le Cep, nr max RE 2020 en appliquant la formule issue des textes en consultation pour le CSCEE de décembre 2020 en appliquant les modulations, la ligne rouge en pointillés présente le seuil de DH max (1250 DH).

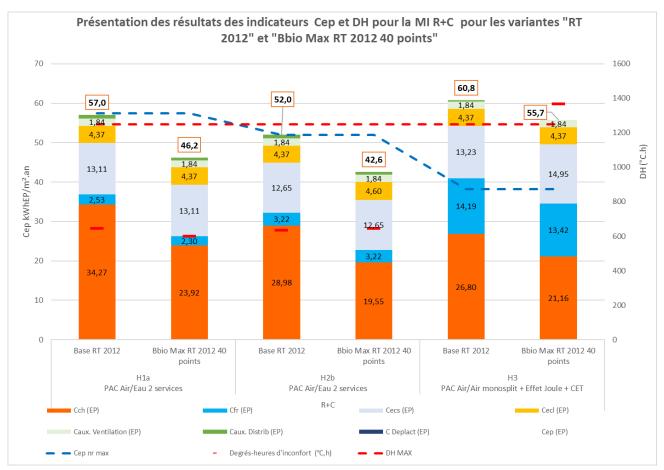


Figure 8 : Présentation des résultats des indicateurs Cep, nr et sa décomposition et DH pour la MI R+C pour les variantes « RT 2012 » et « Bbio Max RT 2012 40 points ».

Constats:

- Par rapport à l'exigence Cep, nr :
 - L'exigence est facilement respectée en zone H1a et H2b pour la variante « Bbiomax RT 2012 40 points »,
 - L'exigence n'est pas respectée pour les deux variantes en zone H3, l'atteinte de l'exigence Cep, nr
 Max en zone H3 sera détaillée dans la suite de l'étude (§ 4.7.5) :
 - Si l'on considère le Cfr à 0 (DH < à 350) pour la variante « Bbio Max RT 2012 40 points »
 l'exigence sur le Cep, nr max sera pas atteinte.
 - Pour cette variante le Cfr a été calculé manuellement, en effet le moteur de calcul ne calcul par le Cfr si les DH du projet sont > au seuil max de 1250.
- Par rapport à l'exigence DH max :
 - L'exigence est atteinte en zone H1a et H2b,
 - L'exigence est dépassée en zone H3 le bâtiment est donc non règlementaire. Cette typologie à combles aménagés est quasiment inexistante sur cette zone climatique, toutefois pour cette

variante le BET devra optimiser les DH afin de rendre le bâtiment règlementaire, cette action entrainera une baisse du Cfr.

■ Décomposition du Cep, nr :

Comment lire ce tableau : ce tableau présente les résultats de l'indicateur Cep, nr et sa décomposition en % pour les variantes « Base RT 2012 » et « Bbio max RT 2012 40 points » avec le moteur de calcul RE 2020 R_427.

Type de MI	Zone climatique	Variante	Cep (kWhEP/m².an)	Cch (%)	Cfr (%)	Cecs (%)	Cecl (%)	Caux. Ventilation (%)	Caux. Distrib	C Deplact (%)
	H1b	Base RT 2012	57,04	61%	5%	23%	8%	3%	2%	0%
	ПТО	Bbio max RT 2012 40 points	46,23	55%	5%	30%	10%	4%	2%	0%
R+C	H2b	Base RT 2012	51,98	60%	7%	26%	9%	4%	2%	0%
K+C	П20	Bbio max RT 2012 40 points	42,55	51%	8%	33%	12%	5%	2%	0%
	шэ	Base RT 2012	60,77	41%	22%	20%	7%	3%	1%	0%
	Н3	Bbio max RT 2012 40 points	55,74	41%	26%	29%	8%	4%	0%	0%

Tableau 9 : Présentation de l'indicateur Cep, nr et de sa décomposition pour les variantes Base RT 2012 et Bbio RT 2012 40 points avec le moteur RE 2020 R_427

→ La part du Cfr est faible en zone H1a et H2b, en zone H3 elle représente 26 % du Cep, nr la variante « Bbio max RT 2012 40 points ».

4.4.5. ANALYSE SUR L'INDICATEUR ICENERGIE

Comment lire ce tableau : ce tableau présente le résultat de l'indicateur IC_{énergie} pour la maison R+C ainsi que le niveau Ic_{énergie}max et la variation de l'indicateur entre la variante « Base RT 2012 » et la variante « Bbiomax RT 2012 40 points ».

			Ic Energie (kg. Eq. CO2)	Ic Energie max Ic Energie (kg. Eq. CO2)	Variation entre RT 2012 et Bbiomax RT 2012 40 points (kg. Eq. CO2)
	H1a	Base RT 2012	74	178	15
	PAC Air/Eau 2 services	Bbio Max RT 2012 40 points	59	178	15
R+C	H2b	Base RT 2012	66	162	- 13
N+C	PAC Air/Eau 2 services	Bbio Max RT 2012 40 points	53	162	15
	H3	Base RT 2012	60	122	6
	PAC Air/Air monosplit + Effet Joule +	Bbio Max RT 2012 40 points	54	122	U

Tableau 10 : Présentation des résultats des indicateurs Icénergie et Icénergie max pour la MI R+C pour les variantes « RT 2012 » et « Bbio Max RT 2012 40 points ».

Constats:

- L'ensemble des variantes sont nettement inférieures au seuil Icénergie max,
- Le renforcement des exigences sur l'enveloppe permet une baisse de l'indicateur Icénergie.

4.5. PRESENTATION DES RESULTATS POUR LA MI AVEC TOITURE TERRASSE (R+1)

4.5.1. VISION D'ENSEMBLE

Comment lire ce graphique : ce graphique présente, pour la MI avec toiture terrasse sur trois zones climatiques, les résultats des variantes « Base RT 2012 », qui respectent les exigences de la RT 2012 et des variantes « Bbio Max RT 2012 40 points » qui dans cette étude s'approchent le plus de l'exigence Bbio max RE 2020 proposé par la DHUP en novembre 2020. Les indicateurs Bbio, le Cep, nr se lisent sur l'axe de gauche, l'indicateur DH et Icénerale sur l'axe de droite.

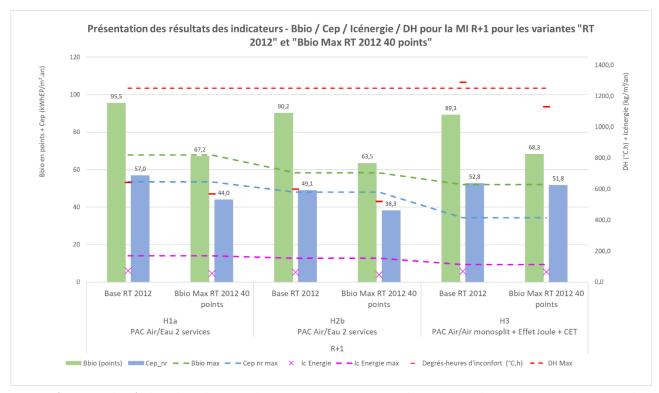


Figure 9 : Présentation des résultats des indicateurs Bbio, Cep, nr, Icénergie et DH pour la MI R+1 pour les variantes « RT 2012 » et « Bbio Max RT 2012 40 points ».

Constats:

Rappel: Les maisons étudiées n'ont pas été optimisée vis-à-vis du confort d'été,

- En zone H1a : la variante « Bbiomax RT 2012 40 points » respecte les 4 exigences : Bbio max, Cep, nr max, Icénergie max et DHmax,
- En zone H2b:
 - La variante « Bbiomax RT 2012 40 points » respecte : les exigences Cep, nrmax, Icénergie max et
 DHmax. L'exigence Bbio max n'est pas respectée.
- En zone H3:
 - La variante « Bbiomax RT 2012 40 points » respecte les 2 exigences : Icénergie max et DHmax. Les exigences Bbio max, Cep, nr max ne sont pas respectées.

4.5.2. DESCRIPTIF TECHNIQUE

Comment lire ce tableau : Ce tableau présente l'évolution du descriptif technique réalisé par le BET entre le cas de base « RT 2012 » et la variante « Bbiomax RT 2012 40 points » pour la MI R+1 sur trois zones climatiques. Si une cellule est fusionnée entre les deux variantes cela signifie qu'il n'y a pas eu de modification entre les deux cas. Les cellules en orange montrent des niveaux de performance inférieures aux incitations à la rénovation (MaPrimeRénov' – CEE...).

Nom bâtiment	·	,	Toiture Te	errasse (R+1)			
Zone climatique	H	11a		H2b	нз	l	
Structure			Maço	onnerie			
Chauffage + ECS		PAC Air/Eau	2 services		PAC Air/Air monosplit + Effet Joule + CET		
Type de Variante	Base RT2012	Bbio Max RT 2012 40 pts	Base RT2012 Bbio Max RT 2012 40 pts		Base RT2012	Bbio Max RT 2012 40 pts	
Murs Extérieurs et murs sur locaux non chauffés	U _{paroi} = 0,27 W/(m ² .K) (R _{paroi} = 3,15 m2.K/W)	U _{paroi} = 0,18 W/(m².K) (R _{paroi} = 5,2 m2.K/W)	U _{paroi} = 0,27 W/(m².K) (R _{paroi} = 3,15 m2.K/W)	U _{paroi} = 0,18 W/(m².K) (R _{paroi} = 5,2 m2.K/W)	U _{paroi} = 0,27 W/(m².K) (R _{paroi} = 3,15 m2.K/W)	U _{paroi} = 0,18 W/(m².K) (R _{paroi} = 5,2 m2.K/W)	
Toiture Terrasse	$U_{paroi} = 0,14$ $W/(m^2.K)$ $(R_{paroi} = 6,7$ $m2.K/W)$	U _{paroi} = 0,12 W/(m².K) (R _{paroi} = 7,75 m2.K/W)	$U_{paroi} = 0.14$ $W/(m^2.K)$ $(R_{paroi} = 6.7$ m2.K/W)	U _{paroi} = 0,12 W/(m².K) (R _{paroi} = 7,75 m2.K/W)	U _{paroi} = 0,14 W/(m².K) (R _{paroi} = 6,7 m2.K/W)	U _{paroi} = 0,12 W/(m ² .K) (R _{paroi} = 7,75 m2.K/W)	
Plancher sur Vide Sanitaire	$U_{paroi} = 0,33$ $W/(m^2.K)$ $(R_{paroi} = 2,6$ m2.K/W)	U _{paroi} = 0,17 W/(m².K) (R _{paroi} = 5,5 m2.K/W)	$U_{paroi} = 0.33$ $W/(m^2.K)$ $(R_{paroi} = 2.6$ m2.K/W)	U _{paroi} = 0,17 W/(m².K) (R _{paroi} = 5,5 m2.K/W)	U _{paroi} = 0,55 W/(m².K) (R _{paroi} = 1,35 m2.K/W)	U _{paroi} = 0,19 W/(m ² .K) (R _{paroi} = 4,65 m2.K/W)	
Uwmoyen W/(m².K)	1,40 sauf baie vitrée 1,60	1,30 sauf baie vitrée 1,40	1,40 sauf baie vitrée 1,60	1,30 sauf baie vitrée 1,40	1,40 sauf baie vitrée 1,60	1,30 sauf baie vitrée 1,40	
Type de protection mobile							
Gestion des protections mobiles	Gestion manuelle	Gestion motorisée	Gestion manuelle	Gestion motorisée			
Coffre Vr	Uc 2 W/m².K	Uc 0,90 W/m ² .K	Uc 0,90 W/m².K				
Perméabilité à l'air			1	0,6			

Tableau 11: Présentation des descriptifs techniques pour la MI R+C pour les variantes « RT 2012 » et « Bbio Max RT 2012 40 points ».

Constats:

- Dans les variantes « Base RT 2012 » les performances des cellules en orange ne respectent pas les exigences minimales des aides à la rénovation (MaPrimeRénov', CEE...),
- On constate une augmentation de la performance de l'enveloppe pour les variantes « Bbio max RT 2012 40 points » par rapport aux variantes « Base RT 2012 ».
- Les niveaux de performances pour la variante « Bbiomax RT 2012 40 points » sont des performances avec des solutions techniques présentent sur le marché et accessibles sans aucune rupture technologique.
- Pour cette MI le Bbio en zone H2b et plus particulièrement en zone H3 sont supérieur à l'exigence BbioMax, les descriptifs ne sont donc pas représentatifs en l'état.

4.5.3. ANALYSE SUR L'INDICATEUR BBIO

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur Bbio et sa décomposition pour la variante « Bbio Rt 2012 40 points » pour la maison avec toiture terrasse sur trois zones climatiques avec le moteur de calcul RE 2020 R_427 de novembre 2020. La ligne rouge avec des pointillés présente le Bbio max RE 2020 en appliquant la formule issue des textes en consultation pour le CSCEE de décembre 2020 avec un Bbio max de 63 points et en appliquant les modulations.

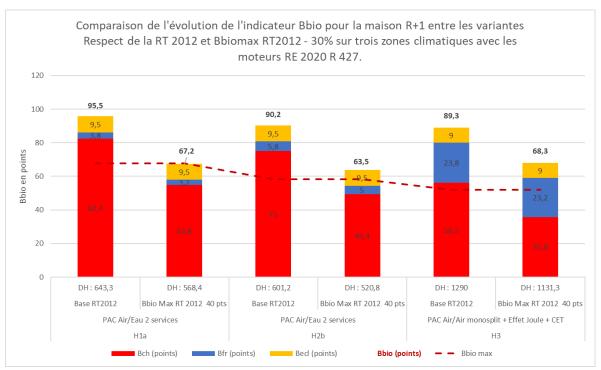


Figure 10: Comparaison de l'indicateur Bbio pour la MI R+1 entre la variante « Base RT 2012 » et « Bbiomax RT 2012 40 points »

Constats:

- Par rapport à l'exigence Bbiomax :
 - o L'exigence est respectée en zone H1a avec -0.6 points par rapport au Bbiomax,
 - → Possibilité pour le BET de dégrader les performances pour se rapprocher du niveau Bbiomax.
 - L'exigence n'est pas respectée :
 - L'exigence est respectée en zone H2b avec +5 points par rapport au Bbiomax,
 - En zone H3: +16,2 points par rapport au Bbiomax Le Bfr devra être optimisé pour respecter l'exigence.

Sur la décomposition du Bbio :

Comment lire ce tableau : ce tableau présente les résultats de l'indicateur Bbio et sa décomposition en % pour les variantes « Base RT 2012 » et « Bbio max RT 2012 40 points » avec le moteur de calcul RE 2020 R_427.

Type de MI	Zone climatique	Variante	Bbio (points)	Bch (%)	Bfr (%)	Becl (%)
	H1a	Base RT2012	95,5	86%	4%	10%
	Піа	Bbio 40 pts	67,2	82%	5%	14%
R+1	H2b	Base RT2012	90,2	83%	6%	11%
NTI		Bbio 40 pts	63,5	78%	8%	15%
	Н3	Base RT2012	89,3	63%	27%	10%
	115	Bbio 40 pts	68,3	52%	34%	13%

Tableau 12 : Présentation de l'indicateur Bbio et de sa décomposition pour les variantes Base RT 2012 et Bbio RT 2012 40 points avec le moteur RE 2020 R 427

→ La part de Bfr est faible en zone H1a et H2b, en zone H3 elle représente plus d'un tiers 1/3 du Bbio projet. C'est le Bfr le plus important entre les trois MI.

4.5.4. ANALYSE SUR L'INDICATEUR CEP, NR ET DH

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur DH et Cep, nr avec sa décomposition pour la variante « Bbio Rt 2012 40 points » pour la maison à combles aménagés sur trois zones climatiques avec le moteur de calcul RE 2020 R_427 de novembre 2020. La ligne bleue avec des pointillés présente le Cep, nr max RE 2020 en appliquant la formule issue des textes en consultation pour le CSCEE de décembre 2020 en appliquant les modulations, la ligne rouge en pointillés présente le seuil de DH max (1250 DH).

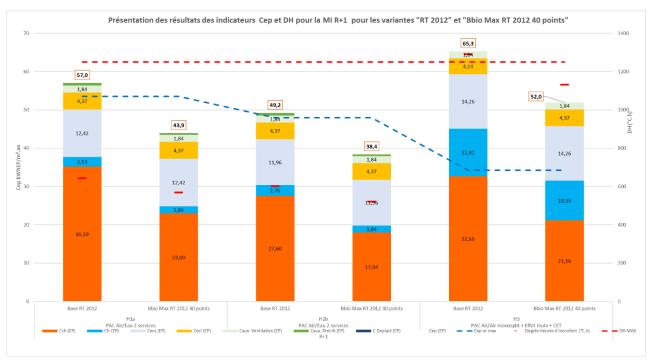


Figure 11 : Présentation des résultats des indicateurs Cep, nr et sa décomposition et DH pour la MI R+1 pour les variantes « RT 2012 » et « Bbio Max RT 2012 40 points ».

Constats:

- Par rapport à l'exigence Cep, nr :
 - L'exigence est facilement respectée en zone H1a et H2b pour la variante « Bbiomax RT 2012 40 points » alors que le Bbio max n'est pas respecté en zone H2b,

- L'exigence n'est pas respectée pour les deux variantes en zone H3, l'atteinte de l'exigence Cep, nr
 Max en zone H3 sera détaillée dans la suite de l'étude (§ 4.7.5) :
 - Si l'on considère le Cfr à 0 (DH < à 350) pour la variante « Bbio Max RT 2012 40 points » l'exigence sur le Cep, nr max ne sera pas atteinte.</p>
- o Par rapport à l'exigence DH max : L'exigence est atteinte en zone H1a et H2b et H3.

Sur la décomposition du Cep, nr :

Comment lire ce tableau : ce tableau présente les résultats de l'indicateur Cep, nr et sa décomposition en % pour les variantes « Base RT 2012 » et « Bbio max RT 2012 40 points » avec le moteur de calcul RE 2020 R 427.

	Type de MI	Zone climatique	Variante	Cep (kWhEP/m².an)	Cch (%)	Cfr (%)	Cecs (%)	Cecl (%)	Caux. Ventilation (%)	Caux. Distrib (%)	C Deplact (%)
ĺ		H1b	Base RT 2012	57,04	61%	5%	23%	8%	3%	2%	0%
l		птр	Bbio max RT 2012 40 points	46,23	55%	5%	30%	10%	4%	2%	0%
l	R+C	H2b	Base RT 2012	51,98	60%	7%	26%	9%	4%	2%	0%
ı	N+C	пги	Bbio max RT 2012 40 points	42,55	51%	8%	33%	12%	5%	2%	0%
l		Н3	Base RT 2012	60,77	41%	22%	20%	7%	3%	1%	0%
ı		H3	Bbio max RT 2012 40 points	55,74	41%	26%	29%	8%	4%	0%	0%

Tableau 13 : Présentation de l'indicateur Cep, nr et de sa décomposition pour les variantes Base RT 2012 et Bbio RT 2012 40 points avec le moteur RE 2020 R_427

→ La part du Cfr est faible en zone H1a et H2b, en zone H3 elle représente 26 % du Cep, nr la variante « Bbio max RT 2012 – 40 points ».

4.5.5. ANALYSE SUR L'INDICATEUR ICENERGIE

Comment lire ce tableau : ce tableau présente le résultat de l'indicateur $IC_{\acute{e}nergie}$ pour la maison 1N ainsi que le niveau $Ic_{\acute{e}nergie}$ max et la variation de l'indicateur entre la variante « Base RT 2012 » et la variante « Bbiomax RT 2012 40 points ».

			Ic Energie (kg. Eq. CO2)	Ic Energie max Ic Energie (kg. Eq. CO2)	Variation entre RT 2012 et Bbiomax RT 2012 40 points (kg. Eq. CO2)
	H1a	Base RT 2012	74	169	18
	PAC Air/Eau 2 services	Bbio Max RT 2012 40 points	56	169	10
R+1	H2b	Base RT 2012	63	153	15
N+1	PAC Air/Eau 2 services	Bbio Max RT 2012 40 points	48	153	15
	Н3	Base RT 2012	68	113	4
	PAC Air/Air monosplit + Effet Joule +	Bbio Max RT 2012 40 points	64	113	4

Tableau 14 : Présentation des résultats des indicateurs $Ic_{\acute{e}nergie}$ et $Ic_{\acute{e}nergie}$ max pour la MI R+1 pour les variantes « RT 2012 » et « Bbio Max RT 2012 40 points ».

Constats:

- L'ensemble des variantes sont nettement inférieures au seuil Icénergie max,
- Le renforcement des exigences sur l'enveloppe permet une baisse de l'indicateur Icénergie.

4.6. LE NOUVEL INDICATEUR DU CONFORT D'ETE: LES DEGRES HEURES (DH)

4.6.1. LES DH DES CAS DE BASE

Comment lire ce tableau : ce tableau présente les variations des valeurs des DH (minimales - moyennes et maximales) pour l'ensemble des variantes RT2012 sur les 3 zones climatiques selon le type de maison.

	H1a			H2b			Н3		
	Min	Moyenne	Max	Min	Moyenne	Max	Min	Moyenne	Max
1N	660	722	894	562	638	857	1177	1317	1709
R+1	637	707	904	588	687	956	1286	1420	1816
R+C	605	662	927	594	665	1006	1344	1462	2059
Moyenne	634	697	908	581	663	940	1269	1400	1861

Tableau 15 : Présentation des variations des DH en fonction des zones climatiques

Les variantes « base RT 2012 » étant des bâtiments avec des prestations courantes, on constate qu'aucun cas est sous le seuil des 350 DH.

En zone H3, les variantes de base sont proches ou supérieures à l'exigence DHmax de 1250 DH. Cela induit qu'un bâtiment avec des prestations respectant strictement la RT 2012, sans optimisation pour le confort d'été, est inconfortable dans cette zone climatique au regard de ce nouvel indicateur.

L'indicateur DH évolue toutes typologies de MI confondues :

En zone H1a : de 605 à 904 DH,
En zone H2b : de 562 à 1006 DH,
En zone H3 : de 1177 à 2059 DH.

L'amplitude sur le nombre de DH est forte entre les zones climatiques « chaude » et « froide ». Logiquement, la zone H3 a plus d'inconfort que les zones H1a et H2b. Etonnamment la zone H2b est en moyenne moins inconfortable en été que la zone H1a (663 DH contre 697 DH en moyenne), alors que le Bfr est lui plus faible en zone H1a qu'en zone H2b. Nous pouvons supposer que la période caniculaire a été plus forte en zone H1a qu'en zone H2b alors qu'un été courant est visiblement plus chaud en zone H2b qu'en zone H1a (ce que montre l'indicateur Bfr).

→ Ce niveau de DH élevé devrait permettre de bien discriminer les solutions pouvant améliorer le confort d'été.

4.6.2. LA LIAISON DH - CFR

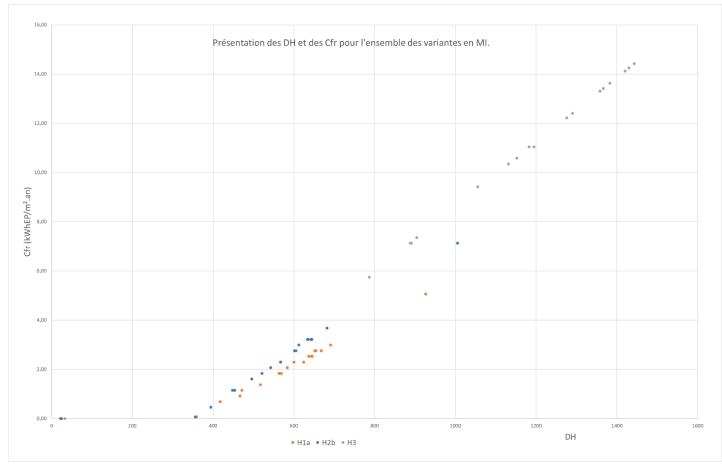


Figure 12: Présentation du Cfr selon les DH pour l'ensemble des variantes en MI (toutes typologies) selon les 3 zones climatiques

Les constats :

- Pour l'ensemble des variantes de l'étude, il y a très peu de cas avec un DH < au seuil de 350 DH (ligne verte).
- Les zones climatique H1a et H2b ont des niveaux de DH relativement proches mais très différents de la zone H3.
- Le DH Max à 1250 DH est une contrainte uniquement pour la zone H3.
- → Cela démontre bien que l'on ne peut pas construire de la même manière dans le nord ou dans le sud de la France.
- La modification de la méthode de calcul du Cfr pour les bâtiments non climatisés par rapport aux nombres de DH annule l'effet de seuil constaté avec l'ancienne méthode de calcul RE 2020 pour les cas < à 350 DH.

4.6.3. LES POIDS DES AMELIORATIONS SUR LE CONFORT D'ETE - LES VARIANTES UNITAIRES

Comment lire le tableau ci-dessous :

Les résultats du « cas de base » sont la situation de référence. La variation des paramètres (variantes) permet de restituer leurs sensibilités pour chacun d'eux. L'évolution des indicateurs est restituée dans le tableau ci-dessous, soit en gain de confort ou en perte de confort pour l'indicateur DH, soit en baisse ou augmentation des besoins (Bfr en points) et des consommations de froid (Cfr en kWhEP/m².an). Les résultats des cas de base sont avec des occultations manuelles non motorisées et une inertie moyenne. /!\ pour les cas avec climatisation (PAC Air/air réversible) : les DH affichés sont en mode Th-DB.

La légende de couleur facilite la lecture par rapport au cas de base. Nous présentons ici l'ensemble des variantes « confort d'été » étudiées pour chaque zone climatique et chaque typologie de MI.

Baisse des DH (amélioration)

Augmentation des DH (détérioration)

Nom bâtiment	Zone climatique	Variantes	Degrés- heures d'inconfort (°C,h)	Cfr (kWhEP/m².an)	Bfr (points)
		Occ. manuelles non motorisées - BASE	644,9	2,5	2,6
		Occ. manuelles motorisées	624,4	2,3	2,4
		Occ. automatiques	691	3,0	2,6
		Brasseurs d'air	466,2	0,9	2,6
	H1a	Inergie très légère	926,5	5,1	5,8
	пта	Persiennes	583,3	2,1	2,6
		PAC Air/Air gainable réversible	648,3	3,0	2,6
		PAC Air/Air monosplit réversible	652,3	4,4	2,6
		Puits climatique + DF + bypass	358,1	0,1	2,6
		Puits hydraulique sur plafond rafraîchissant	24,9	0,0	2,6
	H2b	Occ. manuelles non motorisées - BASE	635,1	3,2	3,0
		Occ. manuelles motorisées	612,3	3,0	2,8
		Occ. automatiques	682,3	3,7	2,4
		Brasseurs d'air	448,2	1,2	3,0
R+C		Inergie très légère	1005,2	7,1	8,8
K+C		Persiennes	567,2	2,3	2,8
		PAC Air/Air gainable réversible	637,5	4,8	3,0
		PAC Air/Air monosplit réversible	642,6	6,4	3,0
		Puits climatique + DF + bypass	356,1	0,1	3,0
		Puits hydraulique sur plafond rafraîchissant	22,1	0,0	3,0
		Occ. manuelles non motorisées - BASE	1430	14,3	17,8
		Occ. manuelles motorisées	1382,8	13,6	17,6
		Occ. automatiques	1600	16,5	13,8
		Brasseurs d'air	888,2	7,1	17,8
	НЗ	Inergie très légère	2034,3	22,2	28,6
	ПЭ	PAC Air/Air gainable réversible	1430	11,5	17,8
		PAC Air/Air monosplit réversible	1431,4	13,8	17,8
		Persiennes	1275,8	12,2	17,0
		Puits climatique + DF + bypass	891	7,1	17,8
		Puits hydraulique sur plafond rafraîchissant	33	0,0	17,8

Tableau 16 : Présentation des résultats pour les variantes « confort d'été » sur les indicateurs DH (°C,h), Bfr (points), Cfr (kWhEP/m².an) pour la MI R+C pour les zones climatiques H1a, H2b et H3.

Constats et analyses :

- La variante « Puits hydraulique sur plafond rafraîchissant » permet d'être sous le seuil des 350 DH pour l'ensemble des zones climatiques ce qui permet de ne pas déclencher le forfait de pénalisation sur le Cfr.
- La variante « Puits climatique » : nous nous étonnons que l'impact du puits climatique sur les DH ne soit pas meilleur, notamment en zone H3. Le puits climatique apparait comme moins performant que l'action des brasseurs d'airs et du puits hydraulique avec plafond rafraîchissant.
 Le sujet du puits climatique avait déjà été analysé dans plusieurs études précédentes dont « Etude de sensibilité sur l'indicateur DH avec l'introduction d'une séquence caniculaire dans le fichier météo RE2020 », Bastide Bondoux Pouget Consultants Tribu Energie, janvier 2020. Les résultats apparaissent éloignés de relevés in-situ et de l'étude « Etude du potentiel d'un puits climatique ELIXAIR dans une maison individuelle »,
- → Demande de vérification de l'action du puits climatique sur le confort d'été (DH).
- La variante « Occultations automatiques » ne fonctionne pas avec cette version de moteur de calcul, elle dégrade les DH.
- → Ce point a été partagé avec la DHUP et le CSTB.

Transsolar Energie technik GmbH, décembre 2017.

- L'action des brasseurs des brasseurs d'airs sur les DH est toujours très valorisée. Les brasseurs apparaissent comme un moyen très simple de réduire drastiquement l'inconfort, notamment en zone H3, elle est même supérieure à celle du puits climatique en zone H3...

 Si le seuil DH max à 1250 DH est retenu pour définir ce qu'est un bâtiment non règlementaire, l'ajout de brasseurs d'air en zone H3 va permettre de rendre le bâtiment règlementaire. Les brasseurs d'air vont devenir la référence pour limiter l'inconfort en été. Il y a donc un risque à généraliser les brasseurs d'air et conduire à la mise en place d'un système de climatisation a posteriori. Le brasseur d'air agit essentiellement sur la température opérative (confort ressenti) par l'augmentation de la vitesse d'air. Il n'a donc aucune action sur les besoins de froid, contrairement aux autres moyens passifs comme la gestion automatique des protections mobiles et de l'ouverture des baies par exemple.
- → Pour cette variante le BET a intégré 4 brasseurs d'airs (1 séjour + 3 chambres) nous recommandons que l'ensemble du logement soit équipé en brasseurs d'air pour garantir le confort d'été avec cette technologie. L'action d'un brasseur est limitée uniquement à la pièce où il se situe, il est difficilement acceptable de réduire l'inconfort d'été de l'ensemble du bâtiment avec un seul brasseur d'air.
 - Les solutions avec « rafraichissement actif » (variantes « PAC Air / Air réversible ») n'ont pas d'impact sur l'indicateur DH, comme expliqué dans la méthode règlementaire. Le Cfr (consommation réelle) est calculée par rapport au Bfr et non pas par rapport au DH.

On constate que:

Pour les zones climatiques H1a et H2b: la consommation réelle est supérieure au forfait de pénalisation: cela peut inciter à ne pas à déclarer les équipements réversibles installés pour ne pas pénaliser l'indicateur Cep, nr – dans le moteur de calcul R 326 nous avions constaté l'inverse: les consommations de climatisation réelles étaient nettement inférieures au forfait de pénalisation ce qui incitait à avoir recours pour ces zones climatiques à la mise en place de système de refroidissement actif.

O Pour la zone climatique H3: les consommations réelles de refroidissement sont proches des consommations forfaitaires, mais le seuil des 1250 DH est dépassé pour deux MI sur trois. Même en présence d'un équipement de refroidissement actif le bâtiment devra être optimisé pour limiter l'inconfort d'été pour être règlementaire. Cela va dans le sens de la sobriété et de la limitation des consommations de climatisations réelles.

Si le coût pour être inférieur à 1250 DH est économiquement plus élevés pour un bâtiment climatisé que pour un bâtiment non climatisé un des risques identifié est l'installation d'appareils réversibles non déclarés dans l'étude thermique ou l'installation d'équipement de refroidissement peu performant après livraison.

4.6.4. CORRECTION DU BUG SUR LES VOLETS ROULANTS AUTOMATIQUES MOTEUR R_452

Les trois variantes avec des protections mobiles automatisées ont été mises à jour par le BET avec le moteur de calcul RE 2020 R_452. En effet, dans le mail du CSTB présentant la mise à jour du moteur de calcul RE 2020 R_452, il est indiqué que (dans le moteur R_427) : « La matrice prise en compte présentait une erreur, ce qui avait pour effet de baisser l'intérêt de la gestion automatique par rapport à de la gestion manuelle ».

Comparaison des résultats variantes unitaires :

Comment lire ce tableau : ce tableau présente les résultats de la variante « Base RT 2012 » et des variantes « occultations automatisées » entre le moteur R_427 et R_452 pour les indicateurs Cep,nr, Bbio et sa décomposition et DH traversant et non traversant pour la MI R+C pour trois zones climatiques.

Zone Climatique	Moteur de Calcul	Variantes	Cep,nr (kWhEP/m².an)	Variation Cep,nr en %	Bch (points)	Bfr (points)	Becl (points)	Bbio (points)	Variation Bbio en %	Degrés-heures d'inconfort (°C,h)	Variation DH en %
	R_427	BASE RT 2012	57,2		77,6	2,6	9,5	89,9		644,9	
H1a	R_427	Occ. automatiques	57	0%	74,8	2,6	10	87,2	-3%	691	7%
	R_452	Occ. automatiques	53,9	-6%	73,2	1,2	9,5	83,5	-7%	525	-19%
	R_427	BASE RT 2012	51,8		70,6	3	9,5	83,2		635,1	
H2b	R_427	Occ. automatiques	51,6	0%	67,8	2,4	10	80,1	-4%	682,3	7%
	R_452	Occ. automatiques	48,1	-7%	66	1,4	9,5	76,6	-8%	505,1	-20%
	R_427	BASE RT 2012	67,2		49,4	17,8	9,5	76,5		1430	
Н3	R_427	Occ. automatiques	67,3	0%	45,2	13,8	10,5	69,2	-10%	1600	12%
	R 452	Occ. automatiques	59.2	-12%	44.4	11.8	9	65.3	-15%	1096.3	-23%

Tableau 17 : Comparaison des résultats entre le moteur R_427 et R_452 pour la variante « Base RT 2012 » avec les variantes « occultations automatisés » pour la MI R+C.

- → La mise à jour du moteur de calcul permet à la variante « occultations automatisés » d'afficher des résultats qui apparaissent pertinents par rapport au moteur de calcul précédent. Les volets roulants automatisés ont un impact important sur le Cep,nr, le Bbio et sur les DH, cet impact est nettement plus marqué en zone H3:
 - -12 % entre le Cep,nr RT 2012 et l'ajout des « occultations automatisés »,
 - -15 % entre le Bbio RT 2012 et l'ajout des « occultations automatisés »,
 - -23 % entre le DH RT 2012 et l'ajout des « occultations automatisés ».

4.6.5. LES VARIANTES COMBINATOIRES

Comment lire le tableau ci-dessous :

Les résultats du cas de base « Base RT 2012 » sont la situation de référence. La variation des paramètres permet de restituer leurs sensibilités pour chacun d'eux. L'évolution des indicateurs sont restitués dans le tableau ci-dessous, soit en gain de confort ou en perte de confort pour l'indicateur DH, soit en baisse ou augmentation des besoins (Bfr en points), des consommations de froid (Cfr en kWhEP/m².an), du Bbio chaud, éclairage et Bbio total (points) et du Cep (kWhEP/m².an).

Nous présentons ici l'ensemble des variantes dites combinatoires sur le confort d'été étudiées pour chaque zone climatique et typologie de maison.

Zone climatiqu e	Moteur de Calcul	Variante confort d'été	Cfr total (kWhEP/ m².an)	Cep_nr (kWhEP/ m².an)	Variation Cep,nr en %	Bch (points)	Bfr (points)	Becl (points)	Bbio (points)	Variation Bbio en %	IDH (°C h)	Variation DH en %
	R_427	BASE RT 2012	2,5	57		78	3	10	90		645	
H1a	R_452	Occ. automatiques + brasseurs d'air	0,2	53	-8%	73	1	10	84	-7%	368	-43%
пта	R_452	Persiennes + brasseurs d'air	0,7	55	-3%	78	3	10	90	0%	417	-35%
	R_452	Persiennes + occ. automatiques + brasseurs d'air	0,2	53	-8%	73	1	10	84	-7%	370	-43%
	R_427	BASE RT 2012	3,2	52		71	3	10	83		635	
H2b	R_452	Occ. automatiques + brasseurs d'air	0,0	47	-10%	66	1	10	77	-8%	346	-46%
ПZD	R_452	Persiennes + brasseurs d'air	0,5	49	-5%	71	3	10	83	0%	394	-38%
	R_452	Persiennes + occ. automatiques + brasseurs d'air	0,0	47	-10%	66	1	10	77	-8%	352	-45%
	R_427	BASE RT 2012	14,3	67		49	18	10	77		1430	
Н3	R_452	Occ. automatiques + brasseurs d'air	3,9	55	-18%	44	12	9	65	-15%	653	-54%
"3	R_452	Persiennes + brasseurs d'air	5,8	60	-11%	49	17	10	76	-1%	787	-45%
	R 452	Persiennes + occ. automatiques + brasseurs d'air	4,6	55	-18%	44	11	9	65	-16%	706	-51%

Tableau 18 : Présentation des résultats des variantes « confort d'été combinatoires » sur les indicateurs DH ($^{\circ}$ C,h), Bfr (points), Cfr ($kWhEP/m^2$.an), pour la MI R+C sur trois zones climatiques.

Constats:

- La variante « occultation automatiques + brasseurs d'air » en zone H2b est l'unique variante permettant d'être sous le seuil des 350 DH,
- Les différentes combinatoires permettent de réduire l'indicateur DH en moyenne de 44 %,
- En zone H3 la variante « Occultation automatiques + brasseurs d'air » (4 brasseurs) permet de diviser l'inconfort par un facteur 2 :
 - o De 1430 DH pour le cas de base à 653 DH,
 - O De 77 points de Bbio pour le cas de base à 65 points,
 - O De 14.3 kWhEP/m².an pour le Cfr du cas de base à 3.9 kWhEP/m².an.
- La combinatoire « persiennes + occultation automatiques + brasseurs d'air » a un résultat sur l'indicateur DH supérieur à la variante « occultations automatiques (volets roulants) + brasseur d'air », pour cette variante les paramètres utilisés par le BET sont :
 - Typologie de perméabilité : 3 (volets persiennes)
 - Gestion de protection mobile : autre cas avec gestion de protection mobile (la même gestion que pour des volets roulants classiques).

4.6.6. FOCUS SUR LA ZONE H3 ET LA LIAISON DH – CFR – CEP, NR MAX

Pour l'ensemble des variantes étudiées en zone H3, on constate la difficulté de respecter l'indicateur Cep, nr max. La part du Cfr représente de 20% à 30% du Cep, nr. Pour rappel les maisons de l'étude ne sont pas optimisées vis-à-vis du confort d'été, le Cfr a été calculé manuellement dans les cas où l'exigence DHmax est dépassée, le moteur ne calcul pas le Cfr si les DH sont supérieurs à 1250 DH.

Comment lire ce graphique : ce graphique présente l'indicateur Cep, nr et sa décomposition et l'indicateur DH pour l'ensemble des variantes en zone H3 pour les trois typologies de MI. La ligne verte en pointillées correspond à l'exigence Cep, nr max et la ligne rouge en pointillées à l'exigence DH. L'indicateur Cep, nr se lit sur l'axe de gauche, l'indicateur DH sur l'axe de droite.

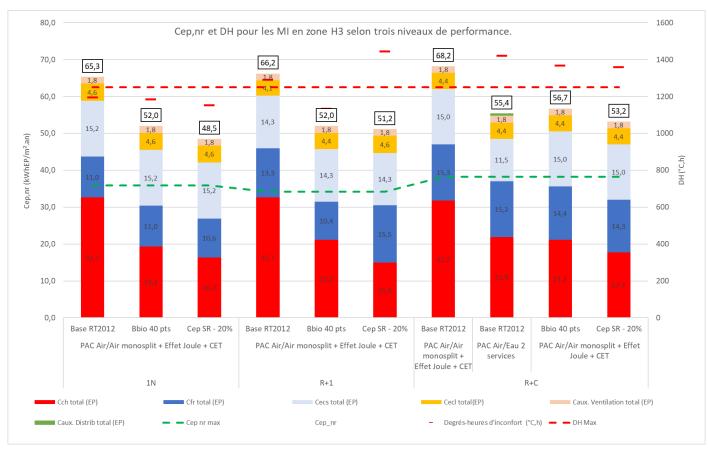


Figure 13: Présentation des indicateurs Cep, nr, Cep, nr max, DH et DH max pour les MI en zone H3 selon trois niveaux de performance

Constats:

Rappel: le Cep, nr max est modulé selon la surface et selon la présence ou non de combles aménagés. Les variantes de performance « Bbio RT 2012 40 points » et « Cep SR -20% » sont proches du seuil de l'exigence Bbiomax ou sous le seuil Bbiomax à l'exception de la variante « Bbio RT 2012 40 points » pour la MI R+1,

- → Le cep, nr est largement dépassé pour cette zone climatique avec des systèmes courants dans la RT 2012, l'exigence apparait comme très contraignante.
- Si les variantes qui dépassent le seuil de 1250 DH le respectaient l'exigence ne serait toujours pas respectée, même si la part de Cfr serait plus faible.

Cas fictif avec des DH projet < à 350 DH et Cfr à 0 kWhEP/m².an

Comment lire ce graphique : ce graphique présente l'indicateur Cep, nr et sa décomposition pour l'ensemble des variantes en zone H3 pour les trois typologies de MI, dans cette exemple fictif les variantes ont des $DH < \grave{a}$ 350 et donc un $Cfr \grave{a}$ 0 $kWhEP/m^2$.an. La ligne verte en pointillées correspond \grave{a} l'exigence Cep, nr max et la ligne rouge en pointillées \grave{a} l'exigence DH. L'indicateur Cep, nr se lit sur l'axe de gauche, l'indicateur DH sur l'axe de droite.

Figure 14 : Exemple fictif des indicateurs Cep, nr, Cep, nr max pour les MI en zone H3 selon trois niveaux de performance avec des DH < à 350 et un Cfr à 0 kWhEP/ m^2 . an pour les MI en zone H3 selon trois niveaux de performance.

Constats:

- Avec des DH < à 350 DH et donc un Cfr égal à 0 kWhEP/m².an l'exigence Cep, nr Max n'est toujours pas respectée pour l'ensemble des cas.
- La variante « PAC Air/Eau 2 Service » pour la maison R+C se rapproche de l'exigence avec des performances correspondantes à un niveau « RT 2012 », on peut supposer qu'en appliquant le descriptif technique des variantes « Bbio RT 2012 à 40 points » cette variante respectera l'exigence Cep, nrMax.
- Pour les autres variantes avec une « PAC Air/Air », le bâti devra être optimisé pour respecter l'exigence.

5. ANALYSE DES RESULTATS PAR TYPOLOGIE : LE LOGEMENT COLLECTIF

5.1. L'IMPACT DE L'EVOLUTION DU MOTEUR DE CALCUL (VERSION R_346 -> R_427)

Illustration de l'impact de l'évolution du moteur de calcul entre le moteur R_346 de juin 2020 et R_427 de novembre 2020.

Sur l'indicateur Bbio :

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur Bbio et sa décomposition pour le LC sur trois zones climatiques avec un niveau de performance « Bbio max RT 2012 - 30 % » avec le moteur RE 2020 R_346 et RE 2020 R_427.

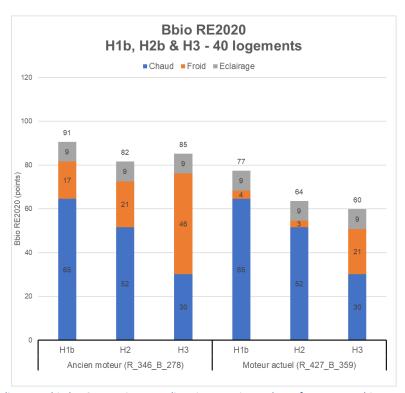


Figure 15 : Evolution de l'indicateur Bbio le LC sur trois zones climatiques – niveau de performance « Bbio max RT 2012 – 30 % » – le moteur RE 2020 R_346 et le moteur RE 2020 R_427 .

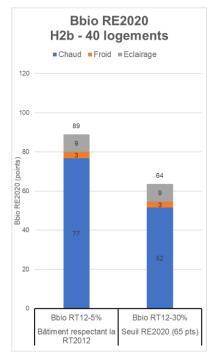
Constats:

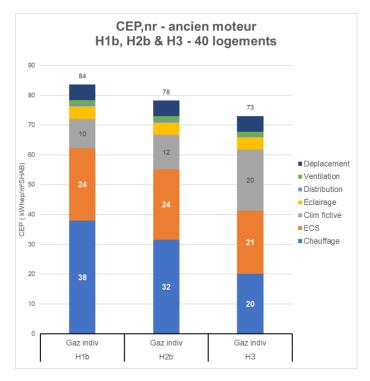
- La modification de moteur de calcul RE 2020 fait baisser le Bbio entre le moteur R_346 et R_427,
- Le Bch (en bleu sur le graphique) et Becl (en gris sur le graphique) sont identiques entre les deux moteurs,
- Le Bfr (en orange sur le graphique) est nettement diminué entre les deux versions de moteur avec la modification de la méthode sur l'autorisation de l'ouverture des baies pour le rafraîchissement nocturne (moteur R_427):
 - H1a: Bbio moteur R_427 Bbio moteur R_346 = -13 points,
 - H2b: Bbio moteur R_427 Bbio moteur R_346 = -18 points,
 - H3: Bbio moteur R_427 Bbio moteur R_346 = -25 points.

ightarrow Comme pour la MI, nous saluons cette évolution dans la méthode de calcul du Bfr.

■ Sur l'exigence Bbio max RE 2020

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur Bbio et sa décomposition pour les variantes « base RT 2012 » et « Bbio Rt 2012 -30% » pour le LC en zone H2b avec le moteur de calcul RE 2020 R_427 de novembre 2020.




Figure 16 : Comparaison de l'indicateur Bbio avec le moteur RE 2020 R_427 avec deux niveaux de performance.

Constat :

- Un LC en zone H2b avec un Bbio RT 2012 5 % transposé dans le moteur de calcul RE 2020 a un Bbio de 89 points.
- Un Lc collectif avec un Bbio RT 2012 30 % transposé dans le moteur de calcul RE 2020 a un Bbio de 64 points.
- L'exigence Bbio Max pour ce logement collectif en zone H2b est de 65 points.
- → Conclusion : le Bbio max RE 2020 proposé par la DHUP pour ce LC est bien un renforcement de l'exigence de 30 % par rapport au Bbio max RT 2012.

Sur l'indicateur Cep, nr :

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur Cep, nr et sa décomposition pour le LC sur trois zones climatiques avec un niveau de performance « Bbio max RT2012 – 30 % » avec le moteur RE 2020 R_346 et RE 2020 R_427.

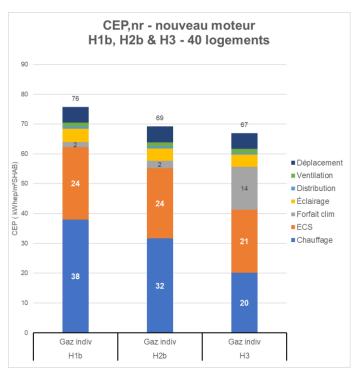


Tableau 19 : Evolution de l'indicateur Cep, nr et DH pour la Maison R+C sur trois zones climatiques – niveau de performance « RT 2012 » entre le moteur RT 2012 – le moteur RE 2020 R_346 et le moteur RE 2020 R_427.

Analyse:

- Indicateur Cep, nr : la modification de moteur de calcul RE 2020 fait baisser l'indicateur,
- Le Cfr (appelé forfait clim ou clim fictive sur les graphiques) est diminué entre les deux versions de moteurs RE 2020 avec la modification de la méthode. Le Cfr était calculé par rapport au Bfr avec le moteur R_346 il est maintenant calculé pour les logements non climatisés par rapport aux DH dans le moteur R_427 :

H1a: -8 kWhEP/m².an,
 H2b: -10 kWhEP/m².an,
 H3: -6 kWhEP/m².an.

→ Nous saluons la modification de la méthode de calcul du Cfr pour les bâtiments non climatisés. Elle est maintenant réalisée en fonction du nombre de DH du projet. Ce nouveau calcul permet d'annuler l'effet de seuil de l'ancienne méthode entre un bâtiment avec 349 DH et un bâtiment avec 351 DH. De plus, cela va permettre d'assurer une meilleure lisibilité pour les concepteurs et BET du forfait de pénalisation par rapport à l'ancienne méthode (liée au Bfr).

¹ A noter que pour H3 et avec le moteur R_427, le Cfr a été calculé manuellement car les DH sont supérieurs à 1250 DH. Il serait plus lisible pour les BET et les différents acteurs utilisant le moteur, que **le calcul du forfait clim s'effectue systématiquement.**

5.2. PRESENTATION DES RESULTATS POUR LE LC

5.2.1. VISION D'ENSEMBLE

Comment lire ce graphique : ce graphique présente, pour le LC sur trois zones climatiques, les résultats des variantes « Bbio RT 2012 -30% » et « Bbiomax RT 2012 -40% ». Les indicateurs Bbio, Cep, nr se lisent sur l'axe de gauche, l'indicateur DH et Icénergie sur l'axe de droite.

Figure 17 : Présentation des résultats des indicateurs Bbio, Cep, nr, $I_{C\acute{e}nergie}$ et DH pour le logement collectif avec deux niveaux de performances « Bbio RT 2012 – 30 % » et « Bbio RT 2012 – 40 % » sur trois zones climatiques.

Analyse:

- En zone H2b: la variante « Bbio RT 2012 -30 % » respecte les 4 exigences: Bbio max, Cep, nr max, Icénergie max et DHmax,
- En zone H1b:
 - La variante « Bbio RT 2012 -30 % » respecte : les exigences Cep, nrmax, Icénergie max et DHmax.
 L'exigence Bbio max n'est pas respectée de 0.3 points.
- En zone H3:
 - La variante « Bbio RT 2012 -30 % » respecte les 2 exigences : Icénergie max et DHmax. Les exigences
 Bbio max, Cep, nr max ne sont pas respectées.
 - Les performances de l'enveloppe sont les mêmes pour toutes les zones climatiques (sauf en zone H3 où des occultations perméables et 1 brasseur par logement ont été ajouté pour respecter les DH).

5.2.2. DESCRIPTIF TECHNIQUE

Comment lire ce tableau: Ce tableau présente l'évolution du descriptif technique réalisé par le BET entre le cas de base « RT 2012 » et les variantes « Bbio RT 2012 -30% » et « Bbio RT 2012 -40% » pour le LC. Si une cellule est fusionnée entre les deux variantes cela signifie qu'il n'y a pas eu de modification entre les deux cas. Les cellules en orange montrent des niveaux de performance inférieures aux incitations à la rénovation (MaPrimeRénov' – CEE...).

Prestations	Variante Bbio RT 2012 – 5%	Variante Bbio RT 2012 – 30%	Variante Bbio RT 2012 – 40%			
Structure		Béton				
Chauffage + ECS		Gaz individuel				
Murs Extérieurs et murs	$U_{paroi} = 0.28 \text{ W/(m}^2.\text{K)}$	$U_{paroi} = 0.23 \text{ W/(m}^2.\text{K)}$	U _{paroi} = 0,20 W/(m².K)			
sur locaux non chauffés	$(R_{isolant} = 3.4 \text{ m}^2.\text{K/W})$	$(R_{isolant} = 4,1 \text{ m}^2.\text{K/W})$	(R _{isolant} = 4,7 m ² .K/W)			
Dlamahambaa	$U_{paroi} = 0.22 \text{ W/(m}^2.\text{K)}$	$U_{paroi} = 0.22 \text{ W/(m}^2.\text{K)}$ $U_{paroi} = 0.09 \text{ W/(m}^2.\text{K)}$				
Plancher bas	$(R_{isolant} = 6 \text{ m}^2.\text{K/W})$	(R _{isolant} = 9,7 m ² .K/W)				
Diamahan basat	U _{paroi} = 0,15 W/(m ² .K)	U _{paroi} = 0,1	0 W/(m².K)			
Plancher haut	$(R_{isolant} = 6.4 \text{ m}^2.\text{K/W})$	(R _{isolant} = 10 m ² .K/W)				
Plancher intermédiaire	Plancher intermédiaire traité à 90%	Plancher intermédiaire traité à 90%	Plancher intermédiaire traité à 90%			
(L9)	Balcons non traités	Balcons traités à 50%	Balcons traités à 90%			
Acrotère (L10)	Non traité	Traité	à 90%			
Perméabilité à l'air m³/(h.m²)	1	0,8	0,6			
Uw _{moyen} W/(m².K)	1,4	1	,3			
Gestion des protections mobiles		Gestion manuelle				
Coffre Vr	Uc 2 W/m ² .K	Uc 1,1 W/m².K	Uc 0,7 W/m².K			

Analyse :

- Dans les variantes « Base RT 2012 » les performances des cellules en orange ne respectent pas les exigences minimales des aides à la rénovation (MaPrimeRénov', CEE...),
- On constate une augmentation de la performance de l'enveloppe pour les variantes « Bbio RT 2012 -30% et 40% » par rapport à la variante « Bbio RT 2012 5% ».
- → Les niveaux de performances pour la variante « Bbio RT 2012 -30% et 40% » sont des performances avec des solutions techniques présentent sur le marché et accessibles sans aucune rupture technologique.

5.2.3. ANALYSE SUR L'INDICATEUR BBIO

Comparaison du Bbio à performance et descriptif identique entre les trois zones climatiques :

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur Bbio et sa décomposition pour les variantes « Bbio Rt 2012 - 30% » et « Bbio Rt 2012 - 40% » pour le LC sur trois zones climatiques avec le moteur de calcul RE 2020 R_427 de novembre 2020. La ligne rouge avec des pointillés présente le Bbio max RE 2020 en appliquant la formule issue des textes en consultation pour le CSCEE de décembre 2020 avec un Bbio max de 65 points et en appliquant les modulations.

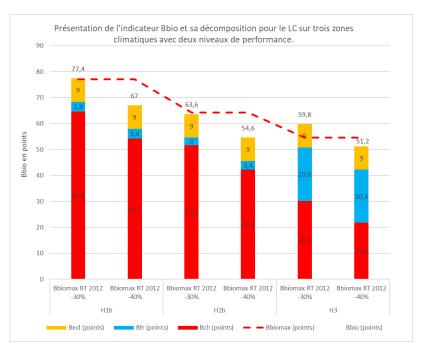


Figure 18: Présentation des résultats de l'indicateur Bbio pour le logement collectif avec deux niveaux de performances « Bbio RT 2012 – 30 % » et « Bbio RT 2012 – 40 % » pour trois zones climatiques.

Constats:

Rappel : le descriptif technique a été optimisé pour la zone H2b pour les deux variantes, le BET a uniquement changé de zone climatique pour les variantes H1b et H3. En zone H3 par exemple le Bfr n'a pas été optimisé.

- Par rapport à l'exigence Bbiomax :
 - L'exigence est respectée en zone H2b,
 - L'exigence n'est pas respectée :
 - En zone H1b: +0.3 points par rapport au Bbiomax,
 - En zone H3: +5 points par rapport au Bbiomax Le Bfr devra être optimisé pour respecter l'exigence.

Sur la décomposition du Bbio :

Comment lire ce tableau : ce tableau présente les résultats de l'indicateur Bbio et sa décomposition en % pour les variantes « Base RT 2012 » et « Bbio RT 2012 -30% » avec le moteur de calcul RE 2020 R_427.

Type de Bâtiment	Zone climatique	Variantes	Bbio (points)	Bch (%)	Bfr (%)	Becl (%)
	H1b	Base RT 2012	77,4	83%	5%	12%
	нти	Bbio max RT 2012 -30 %	67	81%	6%	13%
ıc	H/n	Base RT 2012	63,6	81%	5%	14%
LC.		Bbio max RT 2012 -30 %	54,6	77%	6%	16%
	H-4	Base RT 2012	59,8	51%	34%	15%
		Bbio max RT 2012 -30 %	51,2	43%	40%	18%

Tableau 20 : Présentation de l'indicateur Bbio et de sa décomposition pour les variantes Base RT 2012 et Bbio RT 2012 -30% avec le moteur RE 2020 R_427

→ Le Bfr représente 43 % du Bbio en zone H3 pour la variante « Bbio RT 2012 -30% » contre 26 % en moyenne en MI.

5.2.4. ANALYSE SUR L'INDICATEUR CEP - ICENERGIE - DH EN ZONE H2B

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur DH et Cep, nr avec sa décomposition pour les variantes « Bbio Rt 2012 -30% » et « Bbio Rt 2012 -40% » pour le LC pour la zone climatique H2b avec le moteur de calcul RE 2020 R_427 de novembre 2020. La ligne bleue avec des pointillés présente le Cep, nr max RE 2020 en appliquant la formule issue des textes en consultation pour le CSCEE de décembre 2020 en appliquant les modulations, la ligne rouge en pointillés présente le seuil de DH max (1250 DH), la ligne en violet l'indicateur lcénergiemax.

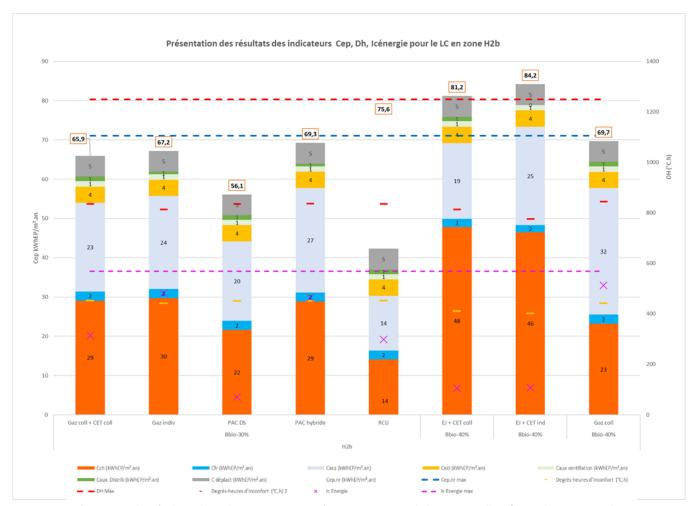


Figure 19 : Présentation des résultats des indicateurs Cep, nr, Icénergie et DH pour le logement collectif avec deux niveaux de performances Bbio RT 2012 - 30 % et Bbio RT 2012 - 40 % en zone climatique H2b.

Comment lire ce tableau : ce tableau compare les résultats des indicateurs Cep, nr et $Ic_{\acute{e}nergie}$ avec les propositions de seuils de la DHUP de novembre 2020 pour le LC en zone H2b. Une cellule est de couleur verte si la variante respecte l'exigence, une cellule est de couleur si la variante ne respecte pas l'exigence. Si la variante « Bbio max RT 2012 – 30 % » ne respecte pas l'exigence Cep, nr Max elle est remplacée par la variante « Bbio max RT 2012 – 40%.

Type de Variante	Chauffage + ECS	Cep,nr (kWhEP/m².an)	Cep,nr Max (kWhEP/m².an)	lc Energie kgCO2/m²	lc Energie max 2021 (kgCO2/m²)	lc Energie max 2024 (kgCO2/m²)
Bbiomax RT 2012 -30%	PAC Double Service	56,1	71,1	69,7	568,4	243,6
Bbiomax RT 2012 -30%	Gaz collectif + CET Collectif	65,9	71,1	314,7	568,4	243,6
Bbiomax RT 2012 -30%	Gaz individuel	67,2	71,1	482,2	568,4	243,6
Bbiomax RT 2012 -30%	PAC Hybride	69,3	71,1	463,0	568,4	243,6
Bbiomax RT 2012 -40%	Gaz collectif	69,7	71,1	512,2	568,4	243,6
Bbiomax RT 2012 -40%	RCU	69,7	71,1	272,8	568,4	243,6
Bbiomax RT 2012 -40%	Effet Joule + CET Collectif	81,2	71,1	104,9	568,4	243,6
Bbiomax RT 2012 -40%	Effet Joule + CET Individuel	84,2	71,1	108,1	568,4	243,6

Tableau 21 : Comparaison des indicateurs Cep, nr, Cep, nr max, Icénergie, Icénergiemax 2021 et 2024 pour le LC en zone H2b

Constats:

- Par rapport à l'exigence Cep, nr : le Cep, nr max contraint très fortement les solutions à effet joule, les solutions Gaz collectif et RCU respectent l'exigence avec une enveloppe renforcée (Bbio RT 2012 -40 %).
- Par rapport à l'exigence Icénergie max 2021 : l'exigence est respectée pour l'ensemble des variantes.
- Par rapport à l'exigence Icénergie max 2024 : l'exigence est respectée uniquement pour la variante avec PAC double service ainsi qu'avec les solutions à Effet joules (contraintes par le Cep, nr). Le RCU est proche de l'exigence.

5.2.5. ANALYSE SUR L'INDICATEUR CEP - ICENERGIE - DH EN ZONE H1B

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur DH et Cep, nr avec sa décomposition pour les variantes « Bbio Rt 2012 -30% » et « Bbio Rt 2012 -40% » pour le LC pour la zone climatique H1b avec le moteur de calcul RE 2020 R_427 de novembre 2020. La ligne bleue avec des pointillés présente le Cep, nr max RE 2020 en appliquant la formule issue des textes en consultation pour le CSCEE de décembre 2020 en appliquant les modulations, la ligne rouge en pointillés présente le seuil de DH max (1250 DH), la ligne en violet l'indicateur lcénergiemax.

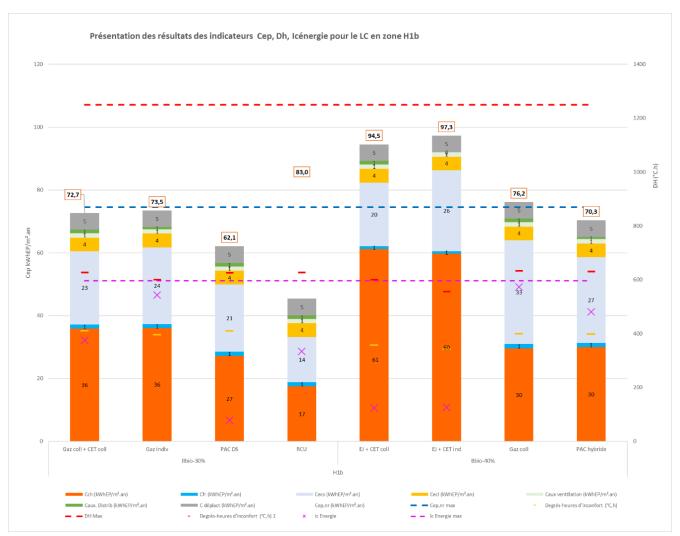


Figure 20: Présentation des résultats des indicateurs Cep, nr, Icénergie et DH pour le logement collectif avec deux niveaux de performances Bbio RT 2012 – 30 % et Bbio RT 2012 – 40 % en zone climatique H1b.

Comment lire ce tableau : ce tableau compare les résultats des indicateurs Cep, nr et $lc_{\acute{e}nergle}$ avec les propositions de seuils de la DHUP de novembre 2020 pour le LC en zone H1b. Une cellule est de couleur verte si la variante respecte l'exigence, une cellule est de couleur si la variante ne respecte pas l'exigence. Si la variante « Bbio max RT 2012 - 30 % » ne respecte pas l'exigence Cep, nr Max elle est remplacée par la variante « Bbio max RT 2012 - 40%.

Type de Variante	Chauffage + ECS	Cep,nr (kWhEP/m².an)	Cep,nr Max (kWhEP/m².an)	ic Energie	lc Energie max 2021 (kgCO2/m²)	lc Energie max 2024 (kgCO2/m²)
Bbiomax RT 2012 -30%	PAC Double Service	62,1	74,6	78,0	596,4	255,6
Bbiomax RT 2012 -30%	Gaz collectif + CET Collectif	72,7	74,6	374,9	596,4	255,6
Bbiomax RT 2012 -30%	Gaz individuel	73,5	74,6	543,5	596,4	255,6
Bbiomax RT 2012 -40%	PAC Hybride	70,3	74,6	480,3	596,4	255,6
Bbiomax RT 2012 -40%	Gaz collectif	76,2	74,6	573,8	596,4	255,6
Bbiomax RT 2012 -40%	RCU	76,6	74,6	306,1	596,4	255,6
Bbiomax RT 2012 -40%	Effet Joule + CET Collectif	94,5	74,6	123,6	596,4	255,6
Bbiomax RT 2012 -40%	Effet Joule + CET Individuel	97,3	74,6	126,4	596,4	255,6

Tableau 22 : Comparaison des indicateurs Cep, nr, Cep, nr max, Icénergie, Icénergiemax 2021 et 2024 pour le LC en zone H1b

Constats:

- Par rapport à l'exigence Cep, nr : le Cep, nr max contraint très fortement les solutions à effet joule, les solutions Gaz collectif et RCU sont proches de l'exigence avec une enveloppe renforcée (Bbio RT 2012 -40 %).
- Par rapport à l'exigence Icénergie max 2021 : l'exigence est respectée pour l'ensemble des variantes.
- Par rapport à l'exigence lc_{énergie}max 2024 : l'exigence est respectée uniquement pour la variante avec PAC double service ainsi qu'avec les solutions à Effet joules (contraintes par le Cep, nr). Le RCU est proche de l'exigence.

5.2.6. ANALYSE SUR L'INDICATEUR CEP - ICENERGIE - DH EN ZONE H3

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur DH et Cep, nr avec sa décomposition pour les variantes « Bbio Rt 2012 -30% » et « Bbio Rt 2012 -40% » pour le LC pour la zone climatique H1b avec le moteur de calcul RE 2020 R_427 de novembre 2020. La ligne bleue avec des pointillés présente le Cep, nr max RE 2020 en appliquant la formule issue des textes en consultation pour le CSCEE de décembre 2020 en appliquant les modulations, la ligne rouge en pointillés présente le seuil de DH max (1250 DH), la ligne en violet l'indicateur lcénergiemax.

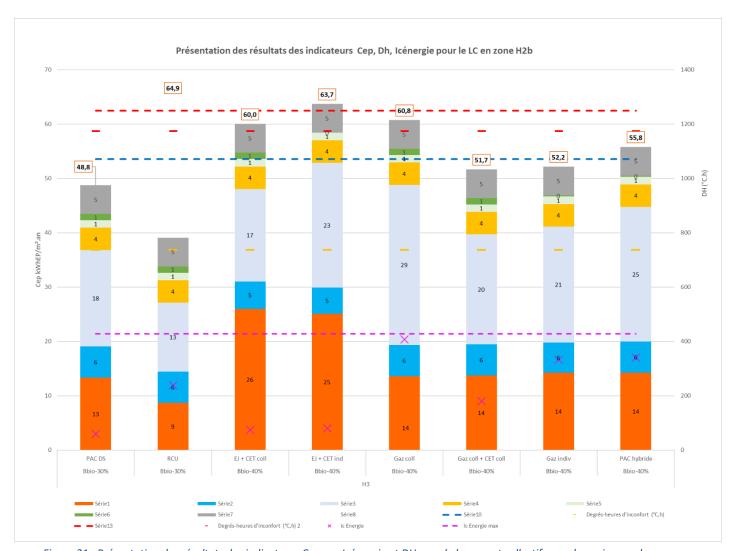


Figure 21 : Présentation des résultats des indicateurs Cep, nr, Icénergie et DH pour le logement collectif avec deux niveaux de performances Bbio RT 2012 - 30 % et Bbio RT 2012 - 40 % en zone climatique H3.

Comment lire ce tableau : ce tableau compare les résultats des indicateurs Cep, nr et Icénergie avec les propositions de seuils de la DHUP de novembre 2020 pour le LC en zone H3. Une cellule est de couleur verte si la variante respecte l'exigence, une cellule est de couleur si la variante ne respecte pas l'exigence. Si la variante « Bbio max RT 2012 – 30 % » ne respecte pas l'exigence Cep, nr Max elle est remplacée par la variante « Bbio max RT 2012 – 40%.

Type de Variante	Chauffage + ECS	Cep,nr (kWhEP/m².an)	Cep,nr Max (kWhEP/m².an)	ic Energie	lc Energie max 2021 (kgCO2/m²)	lc Energie max 2024 (kgCO2/m²)
Bbiomax RT 2012 -30%	PAC Double Service	49,8	53,6	60,4	428,4	183,6
Bbiomax RT 2012 -40%	Gaz collectif + CET Collectif	52,7	53,6	182,3	428,4	183,6
Bbiomax RT 2012 -40%	Gaz individuel	53,5	53,6	333,9	428,4	183,6
Bbiomax RT 2012 -40%	PAC Hybride	56,9	53,6	341,5	428,4	183,6
Bbiomax RT 2012 -40%	RCU	61,2	53,6	219,1	428,4	183,6
Bbiomax RT 2012 -40%	Effet Joule + CET Collectif	61,8	53,6	77,2	428,4	183,6
Bbiomax RT 2012 -40%	Gaz collectif	61,8	53,6	408,7	428,4	183,6
Bbiomax RT 2012 -40%	Effet Joule + CET Individuel	65,7	53,6	81,5	428,4	183,6

Tableau 23 : Comparaison des indicateurs Cep, nr, Cep, nr max, Icénergie, Icénergiemax 2021 et 2024 pour le LC en zone H3

Constats:

- Par rapport à l'exigence Cep, nr : le Cep, nr max contraint très fortement les variantes avec PAC Hybride, RCU, gaz collectif et à effet joule.
- Par rapport à l'exigence Icénergie max 2021 : l'exigence est respectée pour l'ensemble des variantes.
- Par rapport à l'exigence Icénergie max 2024 : l'exigence est respectée uniquement pour les variantes avec PAC double service, Gaz Collectif + CET Collectif ainsi qu'avec les solutions à Effet joules (contraintes par le Cep, nr). Le RCU est proche de l'exigence.

5.2.7. EN RESUME POUR LES INDICATEUR CEP, NR ET ICENERGIE

En résumé pour l'ensemble des zones étudiées :

- L'exigence Icénergie max 2021 n'est contraignante pour aucune des solutions testées,
- L'exigence Icénergie max 2024 est nettement plus contraignante, seules les solutions PAC Doubles service, à effet joule et en zone H3 Gaz collectif + CET Collectif arrivent à respecter l'exigence. Les variantes avec RCU sont proches de l'exigence sans jamais la respecter.
- Cep, nr max : L'exigence contraint principalement les solutions à effet joules toutes zones confondues et demande un renforcement de l'enveloppe pour la solution gaz collectif et le RCU en zone H2b et H1b. En zone H3 ces deux variantes, même si les DH étaient < à 350°C,h elles ne respecteraient pas l'exigence. La performance de l'enveloppe en zone H3 est identique aux zones climatiques H2b et H1b.

5.3. LE NOUVEL INDICATEUR DU CONFORT D'ETE: LES DEGRES HEURES (DH)

5.3.1. LES DH DES CAS DE BASE

Pour les cas de base correspondant à la variante « Bbio Max RT 2012 – 30 % » avec chauffage + ECS gaz individuel l'indicateur DH est de :

- En zone H1b: de 463 (zone traversante) à 626 DH (zone non traversante),
- En zone H2b: de 471 (zone traversante) à 821 DH (zone non traversante),
- En zone H3: de 1039 (zone traversante) à 2420 DH (zone non traversante).
- → L'amplitude sur le nombre de DH est forte entre les zones climatiques « chaude » et « froide » et très forte entre les logements traversant et non traversant. Logiquement, la zone H3 a le plus d'inconfort par rapport à la zone H1b et H2b.
- → L'indicateur DH est contraignant uniquement pour la zone H3 en zone non traversante, sans amélioration sur le confort d'été le bâtiment de l'étude est non règlementaire (> à 1250 DH).
- → Ce niveau de DH élevé devrait permettre de bien discriminer les solutions pouvant améliorer le confort d'été.

5.3.2. LES VARIANTES COMBINATOIRES

Comment lire le tableau ci-dessous :

Les résultats du « cas de base » sont la situation de référence. La variation des paramètres (variantes) permet de restituer leurs sensibilités pour chacun d'eux. L'évolution des indicateurs est restituée dans le tableau ci-dessous, soit en gain de confort ou en perte de confort pour l'indicateur DH, soit en baisse ou augmentation des besoins (Bfr en points) et des consommations de froid (Cfr en BFr). Les résultats des cas de base sont avec des occultations manuelles non motorisées et une inertie moyenne. AFF!\ pour les cas avec climatisation (BFF) (BFF) BFF) les DH affichés sont en mode BFF0.

La légende de couleur facilite la lecture par rapport au cas de base. Nous présentons ici l'ensemble des variantes « confort d'été » étudiées pour chaque zone climatique en LC.

Baisse des DH (amélioration)

Augmentation des DH (détérioration)

Nom bâtiment	Zone climatique	Variantes	Degrés-heures d'inconfort (°C,h) Logement traversant	Degrés-heures d'inconfort (°C,h) Logement non- traversant	Cfr (kWhEP/m².an)	Bfr (points)
		Base	463	626	1,8	4,0
		1 brasseur	399	522	0,9	4,0
	H1b	Occultations perméables + 1 brasseur	279	329	0,0	3,8
	ПБ	Occultations perméables + 3 brasseurs	231	262	0,0	3,8
		Occultations perméables	327	412	0,2	3,8
		Volets Roulant automatiques	473	536	1,6	3,6
		Base	471	821	2,5	3,6
		1 brasseur	413	716	1,6	3,6
LC - 40	H2b	Occultations perméables + 1 brasseur	349	507	0,5	3,2
logements	HZD	Occultations perméables + 3 brasseurs	293	398	0,2	3,2
		Occultations perméables	398	607	1,2	3,2
		Volets Roulant automatiques	511	764	2,5	2,8
		Base	1039	2420	6,4	21,4
		1 brasseur	857	1813	4,8	21,4
	H3	Occultations perméables + 1 brasseur	736	1175	6,9	19,2
	ПЭ	Occultations perméables + 3 brasseurs	616	970	4,8	19,2
		Occultations perméables	879	1627	4,8	19,2
	F	Volets Roulant automatiques	1101	2113	6,9	15,6

Figure 22 : Présentation des variantes combinatoires « confort d'été » pour le logement collectif sur trois zones climatiques.

- La variante « Volets roulants » ne fonctionne pas avec cette version de moteur de calcul, elle dégrade les DH en zone traversante.
- → Ce point a été partagé avec la DHUP et le CSTB attente de correction pour analyse des résultats de cette variante.
- La modification du type d'occultation de « volets roulants » à « occultations perméables » a un impact important sur la baisse des DH. On constate des manques sur la caractérisation des occultations dans le moteur de calcul avec uniquement choix entre 5 types d'occultations.
- L'action des brasseurs des brasseurs d'airs sur les DH est toujours très valorisée. Les brasseurs apparaissent comme un moyen très simple de réduire drastiquement l'inconfort.
- Variante « Occultations perméables + 1 brasseur » : cette variante permet en zone climatique H3 pour les logements non traversant de respecter l'exigence < à 1250 DH. L'action d'un brasseur est limitée à la pièce où il se situe, il semble difficilement acceptable de réduire l'inconfort d'été avec un seul brasseur d'air uniquement dans la pièce de vie par exemple.
- → Pour cette variante le BET a intégré 1 seul brasseur d'air nous recommandons que l'ensemble du logement soit équipé en brasseurs d'air pour garantir le confort d'été avec cette technologie. L'action d'un brasseur est limitée uniquement à la pièce où il se situe, il est difficilement acceptable de réduire l'inconfort d'été de l'ensemble du bâtiment avec un seul brasseur d'air.

5.3.3. CORRECTION DU BUG SUR LES VOLETS ROULANTS AUTOMATIQUES MOTEUR R_452

Les trois variantes avec des protections mobiles automatisées ont été mises à jour par le BET avec le moteur de calcul RE 2020 R_452. En effet, dans le mail du CSTB présentant la mise à jour du moteur de calcul RE 2020 R_452, il est indiqué que (dans le moteur R_427) : « La matrice prise en compte présentait une erreur, ce qui avait pour effet de baisser l'intérêt de la gestion automatique par rapport à de la gestion manuelle ».

Comparaison des résultats :

Comment lire ce tableau : ce tableau présente les résultats de la variante « Base RT 2012 » et des variantes « Volets Roulants automatisés » entre le moteur R_427 et R_452 pour les indicateurs Cep,nr, Bbio et sa décomposition et DH traversant et non traversant en LC pour trois zones climatiques.

Zone climatique	Moteur de calcul	Variante confort d'été	Cep_nr	Bch (points)	Bfr (points)	Becl (points)	Bbio (points)	Variation Bbio en %	Degrés-heures d'inconfort (°C,h)	Variation DH Non-traversant en %	Degrés- heures d'inconfort (°C,h)	Variation DH Non- traversant en %
	R_427	Base RT 2012	77	69	4	10	82,3		463		626	
H1b	R_427	VR auto	76	67	4	10	79,9	-3%	473	2%	536	-14%
	R_452	VR auto	74	68	1	9	78,2	-5%	299	-35%	390	-38%
	R_427	Base RT 2012	70	55	4	9	67,8		471		821	
H2b	R_427	VR auto	69	53	3	10	65,1	-4%	511	8%	764	-7%
	R_452	VR auto	67	54	1	9	63,8	-6%	376	-20%	606	-26%
	R_427	Base RT 2012	59	33	21	9	63,2		1039		2420	
H3	R_427	VR auto	58	29	16	10	54,3	-14%	1101	6%	2113	-13%
	R_452	VR auto	56	31	12	9	51,4	-19%	808	-22%	1647	-32%

Tableau 24 : Comparaison des résultats entre le moteur R_427 et R_452 pour la variante « Base RT 2012 » avec les variantes « Volets Roulants automatisés » en LC.

→ La mise à jour du moteur de calcul permet à la variante « Volets roulants automatisés » d'afficher des résultats qui apparaissent pertinents par rapport au moteur de calcul précédent. Les volets roulants automatisés ont un impact important sur le Bbio et sur les DH, cet impact est nettement plus marqué en zone H3:-19 % entre le Bbio de base avec la variante « volets roulant automatisés » et -32 % pour les DH des logements nontraversants.

6. ANALYSE DES RESULTATS PAR TYPOLOGIE: TERTIAIRE - ENSEIGNEMENT

6.1. L'IMPACT DE L'EVOLUTION DU MOTEUR DE CALCUL RE 2020 (VERSION R_379 -> R_452)

Illustration de l'impact de l'évolution du moteur de calcul entre le moteur R_379 de septembre 2020 et R_452 de décembre 2020.

Sur l'indicateur Bbio :

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur Bbio et sa décomposition pour le bâtiment d'enseignement sur trois zones climatiques avec un niveau de performance « Base RT 2012 » avec le moteur RE 2020 R 379 et RE 2020 R 452.

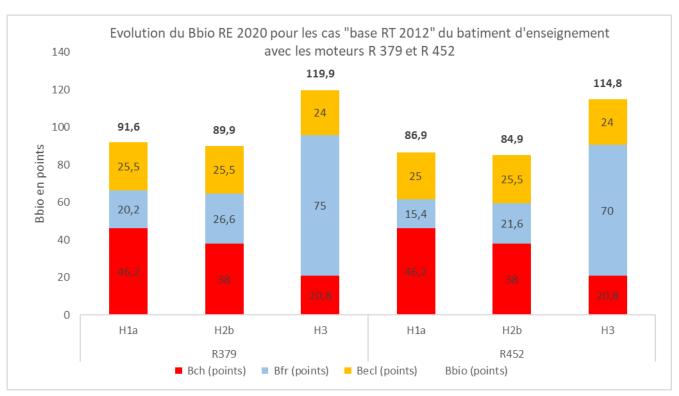


Figure 23 : Evolution de l'indicateur Bbio pour le bâtiment d'enseignement sur trois zones climatiques – niveau de performance « Base RT2012 » – le moteur RE 2020 R_379 et le moteur RE 2020 R_452.

Constats:

- La modification de moteur de calcul RE 2020 fait baisser le Bbio entre le moteur R_379 et R_452,
- Le Bch (en rouge sur le graphique) et Becl (en jaune sur le graphique) sont identiques entre les deux moteurs (à l'exception du Becl en zone H1a, +0.5 points entre les deux versions),
- Le Bfr (en bleu sur le graphique) est diminué entre les deux versions de moteur avec la modification de la méthode sur l'autorisation de l'ouverture des baies pour le rafraîchissement nocturne (moteur R 452) :
 - H1a: Bbio moteur R_452 Bbio moteur R_379 = -5 points,
 - H2b: Bbio moteur R_452 Bbio moteur R_379 = -5 points,
 - H3 : Bbio moteur R_452 Bbio moteur R_379 = -5 points.

→ Comme pour la MI et le LC, nous saluons cette évolution dans la méthode de calcul du Bfr.

Sur l'indicateur Cep, nr :

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur Cep, nr et sa décomposition pour le bâtiment d'enseignement sur trois zones climatiques avec un niveau de performance « Base RT 2012 » avec le moteur RE 2020 R_379 et RE 2020 R_452.

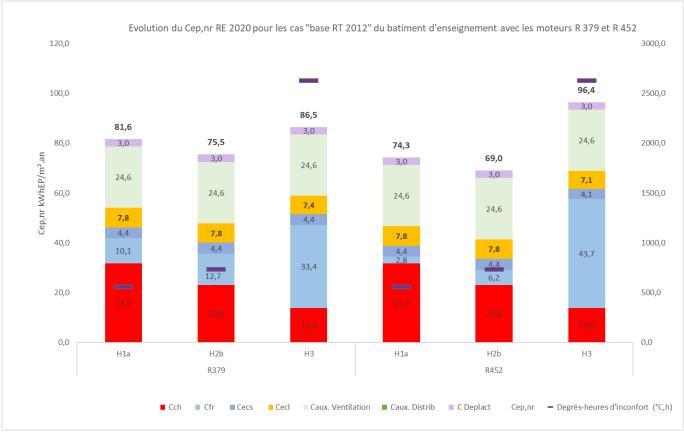


Figure 24 : Evolution de l'indicateur Cep, nr pour le bâtiment d'enseignement sur trois zones climatiques – niveau de performance « Base RT2012 » entre le moteur RE 2020 R_379 et le moteur RE 2020 R_452.

Constats:

- La modification de moteur de calcul RE 2020 fait baisser le Cep, nr avec la baisse du Cfr en zone H1a et H2b suite à la modification de sa méthode de calcul.
- Avec le moteur R_379, le Cfr était calculé par rapport au Bfr, avec le moteur R_452, il est maintenant calculé pour les bâtiments non climatisés par rapport aux DH du projet.
- En zone H3, si le critère des DH a un seuil max identique au résidentiel (1250 DH), ce bâtiment n'est pas règlementaire. Le Cfr a été calculé et ajouté manuellement, le moteur ne le calculant pas quand le seuil de DH Max est supérieur à 1250 DH.
- Evolution de l'indicateur Cfr entre les moteur R 452 et R 379 :
 - \circ H1a: Cfr moteur R_452 Cfr moteur R_379 = -6 kWhEP/m².an,
 - H2b: Cfr moteur R 452 Cfr moteur R 379 = -12 kWhEP/m².an,
- → Nous saluons la modification de la méthode de calcul du Cfr pour les bâtiments non climatisés. Elle est maintenant réalisée en fonction du nombre de DH du projet. Ce nouveau calcul permet d'annuler l'effet de seuil de l'ancienne méthode entre un bâtiment avec 349 DH et un bâtiment avec 351 DH. De plus, cela va permettre d'assurer une meilleure lisibilité pour les concepteurs et BET du forfait de pénalisation par rapport à l'ancienne méthode (liée au Bfr).

6.2. PRESENTATION DES RESULTATS

6.2.1. VISION D'ENSEMBLE

Comment lire ce graphique : ce graphique présente, pour le bâtiment d'enseignement sur trois zones climatiques avec le moteur de calcul RE 2020 R_452 de décembre 2020, les résultats des variantes « Base RT 2012 » - « Enveloppe optimisée » - « Enveloppe + systèmes optimisés ». Les indicateurs Bbio, Cep, nr se lisent sur l'axe de gauche, l'indicateur DH sur l'axe de droite.

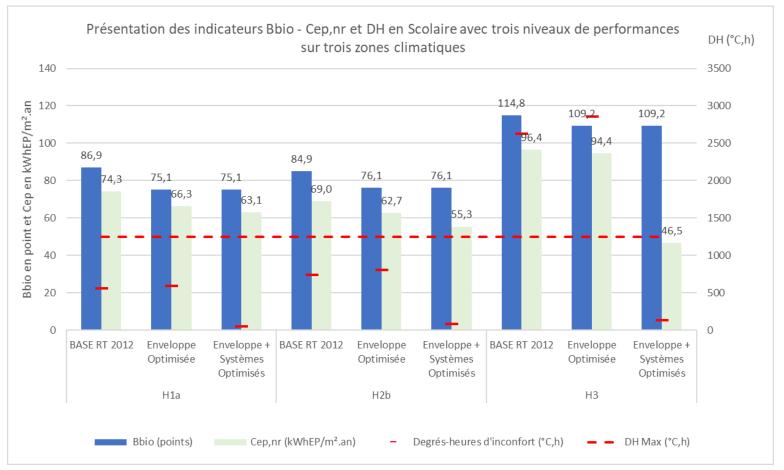


Figure 25 : Présentation des résultats pour le bâtiment d'enseignement sur trois zones climatiques avec trois niveaux de performance.

Constats:

- Logiquement la variante « Enveloppe Optimisée » est plus performance que la variante « Base RT 2012 » pour les indicateurs Bbio et Cep, nr. A l'inverse l'indicateur DH est plus performant pour la variante « Base RT 2012 » par rapport à la variante « Enveloppe Optimisée ».
- La variante « Enveloppe + Système Optimisés » a un Bbio similaire à la variante « Enveloppe Optimisée », la modification des systèmes entre les deux variantes n'ayant pas d'impact sur le Bbio.
- Les indicateurs DH et Cep, nr sont plus performants pour la variante « Enveloppe + Système Optimisés » que pour les variantes « Enveloppe Optimisée » et « Base RT 2012 ».
- En Zone H3, si le seuil de DH max retenu est identique au résidentiel (1250 DH) les variantes « Enveloppe Optimisée » et « Base RT 2012 » ne sont pas règlementaire. Pour ces deux variantes, le Cfr a été ajouté manuellement, le moteur ne le calculant pas quand le seuil de DH Max de 1250 DH est dépassé.

6.2.2. DESCRIPTIF TECHNIQUE

Comment lire ce tableau : Ce tableau présente l'évolution du descriptif technique réalisé par le BET entre le cas de base « RT 2012 » et les variantes « Enveloppe optimisée » et « Enveloppe + système optimisée » pour le bâtiment d'enseignement.

Variantes	Base RT 2012	Enveloppe Optimisée	Enveloppe + systèmes optimisés			
Structure	Maçonnerie	Maçonnerie	Maçonnerie			
Mur extérieur	ITI R=3.75 m ² .k /W Up=0.25 W/(m2.K)	R=8	us bardage m².k /W 4 W/(m².K)			
Plancher bas / vide sanitaire	Dalle béton + isolation sous dalle R=3.7 m².k /W Up=0.24 W/(m2.K)	R=5.4	solation sous dalle I m².k /W 7 W/(m².K)			
Toiture terrasse	Dalle béton R=6.35 m².k /W Up=0.15 W/(m2.K)	Dalle béton R=9 m².k /W Up=0.11 W/(m².K)				
	Double Vitrage aluminium	Double Vitr	age aluminium			
Menuiseries	Uw=1.6 W/m ² .K	Uw=1.4 W/m².K				
extérieures	Sw=0.45, Tlw=0.55	Sw=0.45, Tlw=0.55				
	Stores extérieurs	Stores	extérieurs			
Perméabilité à l'air	1.7 (défaut)	1 (m	nesurée)			
Don't thormique DI	0.5		0.07			
Pont thermique PI	Rupteurs 62%	IT	E2.1.1			
Système Chauffage + ECS		Ch gaz				
Chaud	97,5/108,5%					
Refroidissement	-	- Rafraichissement adiabatique				
Ventilation	DF 70	0% certifiée avec préchauffage +	bypass			
Éclairage	5W/m² détection de	présence + gradation automatiqu	ue dans salles de classe			

Tableau 25 : Présentation des descriptifs techniques pour les trois niveaux de performance (variantes) pour le bâtiment d'enseignement.

6.2.3. ANALYSE SUR L'INDICATEUR BBIO

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur Bbio et sa décomposition pour les variantes cas de base « RT 2012 » et les variantes « Enveloppe optimisée » et « Enveloppe + système optimisés » pour le bâtiment d'enseignement sur trois zones climatiques avec le moteur de calcul RE 2020 R_452 de décembre 2020.

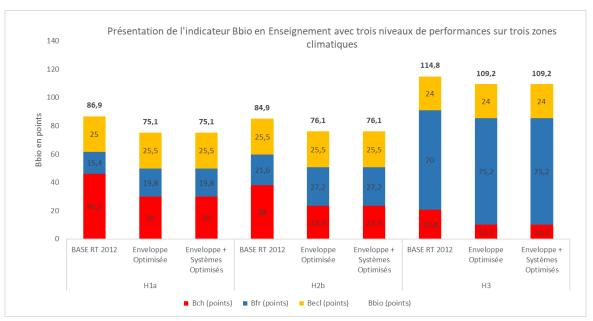


Figure 26 : Présentation des résultats de l'indicateur Bbio pour le bâtiment d'enseignement avec trois niveaux de performances pour trois zones climatiques.

Constats:

- Entre la variante « Base RT 2012 » et les variantes « Enveloppe optimisée » et « Enveloppe + système optimisés » :
 - o Le Bbio total baisse entre la variante de base et les variantes optimisées,
 - o Le Bch diminue, le Bfr augmente avec le renforcement de l'isolation et de l'étanchéité à l'air,
 - Le Becl est identique.

Sur la décomposition du Bbio :

Comment lire ce tableau : ce tableau présente les résultats de l'indicateur Bbio et sa décomposition en % pour les variantes « Base RT 2012 » et les variantes « Enveloppe optimisée » et « Enveloppe + système optimisés » avec le moteur de calcul RE 2020 R_452.

Zone climatique	Variantes	Bch (points)	Bfr (points)	Becl (points)	Bbio (points)
H1a	BASE RT 2012	53%	18%	29%	86,9
H1a	Enveloppe Optimisée	40%	26%	34%	75,1
H1a	Enveloppe + Systèmes Optimisés	40%	26%	34%	75,1
H2b	BASE RT 2012	45%	25%	30%	84,9
H2b	Enveloppe Optimisée	31%	36%	34%	76,1
H2b	Enveloppe + Systèmes Optimisés	31%	36%	34%	76,1
H3	BASE RT 2012	18%	61%	21%	114,8
H3	Enveloppe Optimisée	9%	69%	22%	109,2
H3	Enveloppe + Systèmes Optimisés	9%	69%	22%	109,2

Figure 27 : Présentation de l'indicateur Bbio et de sa décomposition pour les variantes « Base RT 2012 » et les variantes « Enveloppe optimisée » et « Enveloppe + système optimisés » avec le moteur de calcul RE 2020 R_452

→ Le Bfr représente 69 % du Bbio en zone H3 pour les variantes avec une enveloppe optimisée.

6.2.4. ANALYSE SUR L'INDICATEUR CEP, NR ET DH

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur DH et Cep, nr avec sa décomposition pour les variantes cas de base « RT 2012 » et les variantes « Enveloppe optimisée » et « Enveloppe + système optimisés » pour le bâtiment d'enseignement sur trois zones climatiques avec le moteur de calcul RE 2020 R_452 de décembre 2020.

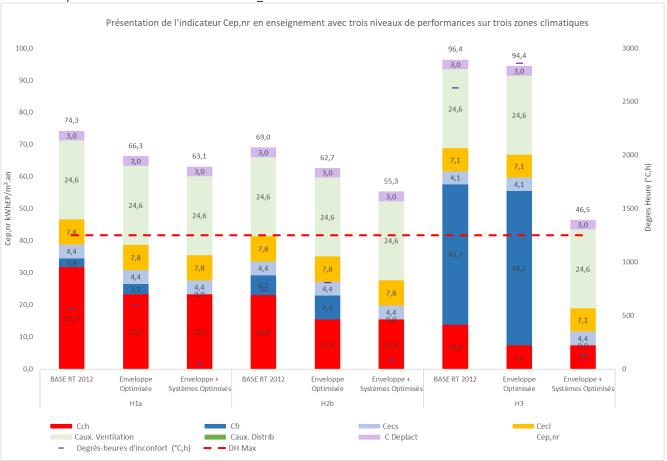


Figure 28 : Présentation des résultats des indicateurs Cep, nr et DH pour le bâtiment d'enseignement avec 3 niveaux de performances base « RT 2012 » et les variantes « Enveloppe optimisée » et « Enveloppe + système optimisés » sur trois zones climatiques.

Constats:

- Entre la variante « Base RT 2012 » et les variantes « Enveloppe optimisée » et « Enveloppe + système optimisés » :
 - Le Cep,nr total baisse :
 - Entre la variante de base et les variantes optimisées,
 - Entre la variante « Enveloppe optimisée » et « Enveloppe + système optimisée ».
 - Le Cch diminue entre la variante de base et les variantes optimisées avec le renforcement de l'isolation et de l'étanchéité à l'air,
 - Le Cfr et les DH augmentent entre la variante « Base RT 2012 » et la variante « Enveloppe optimisée »,
 - Le Cfr et les DH diminuent entre la variante « Enveloppe optimisée » et « Enveloppe + système optimisés » avec l'ajout du rafraichissement adiabatique pour cette dernière.
- En zone H3, seule la variante enveloppe + systèmes optimisés est inférieure à 1250 DH.

Sur la décomposition du Cep, nr :

Comment lire ce tableau : ce tableau présente les résultats de l'indicateur Cep,nr et sa décomposition en % pour les variantes « Base RT 2012 » et les variantes « Enveloppe optimisée » et « Enveloppe + système optimisés » avec le moteur de calcul RE 2020 R_452.

Zone climatique	Variantes	Cch	Cfr	Cecs	Cecl	Caux. Ventilation	Caux. Distrib	C Deplact	Cep,nr	DH (°C,h)
H1a	BASE RT 2012	43%	4%	6%	11%	33%	0%	4%	74,3	559,6
H1a	Enveloppe Optimisée	35%	5%	7%	12%	37%	0%	5%	66,3	594,7
H1a	Enveloppe + Systèmes Optimisés	37%	0%	7%	12%	39%	0%	5%	63,1	50,4
H2b	BASE RT 2012	33%	9%	6%	11%	36%	0%	4%	69,0	735,6
H2b	Enveloppe Optimisée	25%	12%	7%	12%	39%	0%	5%	62,7	808,3
H2b	Enveloppe + Systèmes Optimisés	28%	0%	8%	14%	44%	0%	5%	55,3	81,3
H3	BASE RT 2012	14%	45%	4%	7%	26%	0%	3%	96,4	2627,0
H3	Enveloppe Optimisée	8%	51%	4%	8%	26%	0%	3%	94,4	2858,3
H3	Enveloppe + Systèmes Optimisés	16%	0%	9%	15%	53%	0%	6%	46,5	132,7

Figure 29 : Présentation de l'indicateur Cep,nr et de sa décomposition pour les variantes « Base RT 2012 » et les variantes « Enveloppe optimisée » et « Enveloppe + système optimisés » avec le moteur de calcul RE 2020 R_452.

6.3. LE NOUVEL INDICATEUR DU CONFORT D'ETE: LES DEGRES HEURES (DH)

Pour les cas de base correspondant à la variante « Bbio RT 2012 » avec l'indicateur DH est de :

En zone H1b : de 459 DH,
En zone H2b : de 735 DH,
En zone H3 : de 2627 DH.

- → L'amplitude sur le nombre de DH est forte entre les zones climatiques « chaude » et « froide ». Logiquement, la zone H3 a le plus d'inconfort par rapport à la zone H1b et H2b.
- → L'indicateur DH est contraignant uniquement pour la zone H3, sans amélioration sur le confort d'été le bâtiment de l'étude y est non règlementaire en comparaison avec le seuil proposé dans le résidentiel (> à 1250 DH).
- → Ce niveau de DH élevé devrait permettre de bien discriminer les solutions pouvant améliorer le confort d'été.

6.3.1. LES POIDS DES AMELIORATIONS SUR LE CONFORT D'ETE - LES VARIANTES UNITAIRES

Comment lire le tableau ci-dessous :

Les résultats du « cas de base » sont la situation de référence. La variation des paramètres (variantes) permet de restituer leurs sensibilités pour chacun d'eux. L'évolution des indicateurs est restituée dans le tableau ci-dessous, soit en gain de confort ou en perte de confort pour l'indicateur DH, soit en baisse ou augmentation des besoins (Bfr en points) et des consommations de froid (Cfr en kWhEP/m².an).

Baisse des DH (amélioration)

Augmentation des DH (détérioration)

Zone Climatique	H1a			H2b				нз				
Type de Variante	DH (°C.h)	Bfr (points)	Cfr (kWhEP/m².an)	Cep,nr (kWhEP/m².an)	DH (°C.h)	Bfr (points)	Cfr (kWhEP/m².an)	Cep,nr (kWhEP/m².an)	DH (°C.h)	Bfr (points)	Cfr (kWhEP/m².an)	Cep,nr (kWhEP/m².an)
Base	559,6	15,4	2,8	71,4	735,6	21,6	6,2	65,2	2627	70	43,7	94,3
Inertie très légère	671,1	21,8	4,1	73,7	1024,6	31,8	10,8	71,7	3001,7	76,2	50,9	104,3
Inertie moyenne	593,5	16,0	3,2	71,6	826,3	23,6	7,6	66,6	2725,9	71	45,6	97,4
Inertie très lourde	475,4	14,6	1,6	70,7	603,9	20,2	4,1	63,4	2516	69,4	41,6	92,0
Zone de bruit BR2	569,7	16,4	2,8	71,5	746,9	22,6	6,4	65,4	2658,6	71,2	44,3	94,9
Zone de bruit BR3	569,7	16,4	2,8	71,5	746,9	22,6	6,4	65,4	2658,6	71,2	44,3	94,9
Occultation non motorisée	563	15,8	2,8	71,4	738,3	22,0	6,2	65,3	2639,7	70,6	44,0	94,6
Occultation automatique	493,4	11,0	1,8	69,8	648,4	11,6	4,8	63,1	2385,1	57,4	39,1	89,0
occultation matrice profession IGNES	493,4	11,0	1,8	69,8	648,4	11,6	4,8	63,1	2385,1	57,4	39,1	89,0
occultation sunis store bureau	493,4	11,0	1,8	69,8	648,4	11,6	4,8	63,1	2385,1	57,4	39,1	89,0
Occultation matrice suntracking	324,9	6,2	0,0	68,4	404,9	6,0	0,9	59,8	1635,9	40,6	24,7	75,3
Ouverture automatique des baies	346,6	7,4	0,0	68,7	455,2	8,6	1,6	60,7	1618,4	51,2	24,4	75,2
Brasseurs d'air	482,4	15,4	1,6	71,1	638,5	21,6	4,6	64,4	2245,4	70	36,4	90,0
VMC Simple Flux	529,5	15,4	2,3	65,4	696	21,6	5,5	60,9	2558,1	70	42,4	86,3
Puits climatique	148,6	15,4	0,0	62,5	200,6	21,6	0,0	57,0	667,2	70	6,0	55,8
Surventilation nocturne	328,4	15,4	0,0	76,7	445,5	21,6	1,6	70,6	1690	70	25,7	91,3
Rafraichissement adiabatique	49,7	15,4	0,0	68,7	79,9	21,6	0,0	59,1	131,6	70	0,0	50,8
Casquette solaire	503,7	12,4	2,1	71,4	661,1	17,8	5,1	64,8	2408,9	62,8	39,5	91,3
Facteur solaire parois opaque clair clair	536,6	14,6	2,3	71,2	705	20,6	5,8	64,9	2532,9	67,6	41,9	92,7
Facteur solaire parois opaque sombre sombre	566,2	15,8	2,8	71,4	742,2	22,0	6,2	65,3	2651,7	70,6	44,2	94,8
Ratio ouverture baies 80%	559,6	15,4	2,8	71,4	735,6	21,6	6,2	65,2	2627	70	43,7	94,3
Toiture vegétalisée	552,6	15,2	2,5	71,3	726,3	21,4	6,0	65,1	2602,9	69,4	43,3	93,9
Vitrages à contrôle solaire	491,7	11,6	1,8	71,9	640,6	16,2	4,6	65,1	2367,3	60,4	38,7	91,4
Ratio apport interne	454,4	10,2	1,4	72,2	572,4	13,2	3,5	64,7	2165,2	55,2	34,9	87,5
Ratio ouverture baies 20%	641	20,0	3,7	72,4	849	26,8	8,1	67,0	2946,6	75,4	49,9	100,7
brass_air+cntrl_sol+csqt_sol+surv-noct	219	11,6	0,0	80,6	284,8	16,2	0,0	72,6	997,9	60	12,4	89,5

Figure 30 : Présentation des résultats pour le bâtiment d'enseignement des impacts des variantes unitaires sur les indicateurs du confort d'été (DH, Bfr et Cfr).

Les facteurs de premier ordre d'influence sur les DH sont :

Baisse des DH (amélioration)	Augmentation des DH (détérioration)
Ajout du Rafraichissement adiabatique (DH $_{projet}$ < à 350 DH sur les trois zones climatiques) par rapport à sans. Pas d'impact sur le Bfr.	Inertie moyenne et très légère par rapport à inertie lourde. Augmentation modérée du Bfr
Puits Climatique (DH _{projet} < à 350 DH en H1a et H2b, 667 DH en zone H3) par rapport à sans. Pas d'impact sur le Bfr.	Modification du Ratio d'ouverture des baies.
Ouverture automatique des baies (DH _{projet} < à 350 DH en zone H1a mais pas < à 1250 DH en zone H3) par rapport à sans. baisse très importante du Bfr.	Modification de la zone de bruit.
Occultation des baies matrice Suntracking (DH _{projet} < à 350 DH en zone H1a mais pas < à 1250 DH en zone H3) par rapport à sans – baisse très importante du Bfr.	
Surventilation nocturne par rapport à sans mais forte augmentation du Cep,nr (avec le Caux. Ventilation). Pas d'impact sur le Bfr.	
Modification du ratio des apports internes. Baisse importante du Bfr.	
Brasseur d'air par rapport à sans, la baisse des DH et donc du Cfr compense les consommations des brasseurs. Pas d'impact sur le Bfr.	
Inertie très lourde par rapport à inertie lourde (ne permet pas d'être < à 1250 DH en zone H3). Baisse très modérée du Bfr.	
Vitrages à contrôle solaire par rapport à sans. Baisse importante du Bfr – légère hausse du Bch et Bbio total inférieur au Bbio de base.	

Constats:

- Le rafraichissement adiabatique permet une diminution drastique des DH sur l'ensemble des zones climatiques ; n'étant pas une pratique très répandue actuellement, il faudra s'assurer que le gain théorique sur le confort d'été n'est pas surestimé par rapport au gain constaté sur le terrain.
- Différence très importante de DH calculée, à prestations identiques, entre les zones les plus septentrionales et méridionales. En conséquence, un seuil haut de DH uniforme sur l'ensemble des zones conduirait à :
 - Peu ou pas de contrainte dans les zones les moins chaudes : le seuil haut peut être respecté avec des prestations moins performantes que les pratiques courantes actuelles, alors que celles-ci ne permettent pas toujours elles-mêmes d'assurer un confort d'été suffisant
 - → Importance de bien caler les seuils de Bbio et Cep,nr pour ne pas permettre un relâchement des efforts sur le confort d'été / RT2012

- Beaucoup de contraintes dans les zones les plus chaudes : le seuil haut ne peut être respecté qu'avec des prestations plus performantes que les pratiques courantes actuelles
 - → Importance de bien caler les seuils de Bbio et Cep,nr de façon à permettre la mise en place de la climatisation lorsque celle-ci est nécessaire

7. ANALYSE DES RESULTATS PAR TYPOLOGIE: TERTIAIRE – BUREAUX

7.1. L'IMPACT DE L'EVOLUTION DU MOTEUR DE CALCUL RE 2020 (VERSION R_379 -> R_452)

Illustration de l'impact de l'évolution du moteur de calcul entre le moteur R_379 de juin 2020 et R_452 de décembre 2020.

Sur l'indicateur Bbio :

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur Bbio et sa décomposition pour le bâtiment de bureaux sur trois zones climatiques avec un niveau de performance « Base RT 2012 » avec le moteur RE 2020 R 379 et RE 2020 R 452.

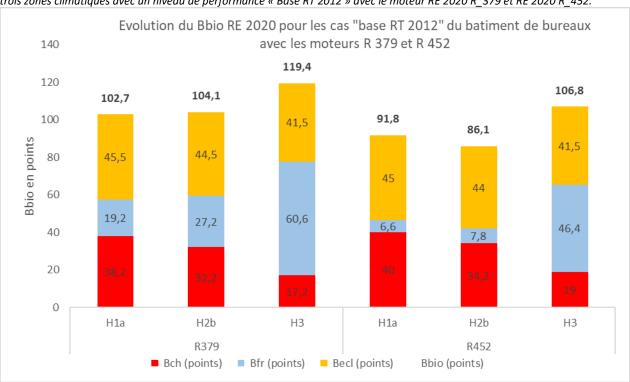


Figure 31 : Evolution de l'indicateur Bbio pour le bâtiment de bureaux sur trois zones climatiques – niveau de performance « Base RT2012 » – le moteur RE 2020 R 379 et le moteur RE 2020 R 452.

Constats:

- La modification de moteur de calcul RE 2020 fait baisser l'indicateur Bbio entre le moteur R_379 et R_452,
- Le Bch est légèrement augmenté entre les deux versions de moteur de calcul +/- 2 points de Bbio,
- Le Becl (en jaune sur le graphique) est identique entre les deux moteurs (à l'exception de la zone H1a pour +0.5 points entre les deux versions),
- Le Bfr (en bleu sur le graphique) est nettement diminué entre les deux versions de moteur avec la modification de la méthode de calcul sur l'autorisation de l'ouverture des baies pour le rafraîchissement nocturne (moteur R_452):
 - H1a: Bfr moteur R_452 Bfr moteur R_379 = -12.6 points,
 - H2b: Bfr moteur R 452 Bfr moteur R 379 = -19.4 points,
 - H3: Bfr moteur R_452 Bfr moteur R_379 = -14.2 points.

→ Comme pour la MI et le LC, nous saluons cette évolution dans la méthode de calcul du Bfr.

Sur l'indicateur Cep, nr :

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur Cep, nr et sa décomposition pour le bâtiment de bureaux sur trois zones climatiques avec un niveau de performance « Base RT 2012 » avec le moteur RE 2020 R_379 et RE 2020 R_452.

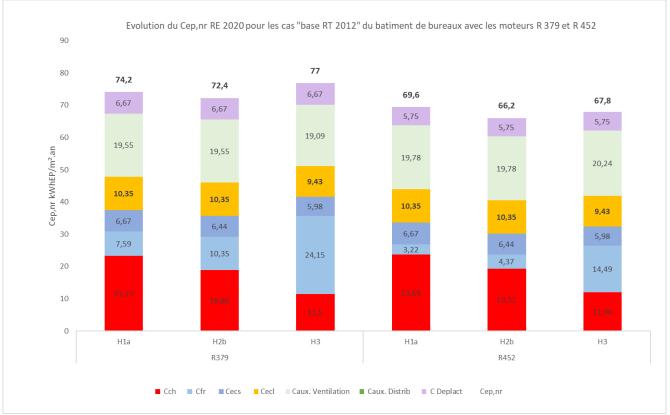


Figure 32 : Evolution de l'indicateur Cep, nr pour le bâtiment de bureaux sur trois zones climatiques – niveau de performance « Base RT2012 » entre le moteur RE 2020 R 379 et le moteur RE 2020 R 452.

Constats:

- La modification de moteur de calcul RE 2020 fait baisser l'indicateur Cep, nr pour le Cch, le Cfr, le CDéplacement et fait augmenter légèrement le Caux. Ventilation.
- Le bâtiment étant climatisé, le Cfr est donc calculé par rapport au consommations réelles de refroidissement, c'est-à-dire par rapport au Bfr et non par rapport à l'indicateur DH. Comme nous l'avons vu précédemment, le Bfr a nettement diminué entre les deux versions de moteur de calcul, logiquement le Cfr diminue lui aussi, évolution du Cfr entre les deux moteurs :
 - o H1a: Cfr moteur R_452 Cfr moteur R_379 = -4.37 kWhEP/m².an,
 - \circ H2b: Cfr moteur R_452 Cfr moteur R_379 = -5.98 kWhEP/m².an,
 - \circ H3: Cfr moteur R 452 Cfr moteur R 379 = -9.66 kWhEP/m².an.
- En zone H3, si l'indicateur DH a un seuil max identique au résidentiel (1250 DH) ce bâtiment ne sera pas règlementaire.

7.2. PRESENTATION DES RESULTATS

7.2.1. VISION D'ENSEMBLE

Comment lire ce graphique : ce graphique présente, pour le bâtiment de bureaux sur trois zones climatiques et avec le moteur de calcul version R_452, les résultats des variantes « Base RT 2012 » - « Enveloppe optimisée » - « Enveloppe + systèmes optimisés ». Les indicateurs Bbio, Cep, nr se lisent sur l'axe de gauche, l'indicateur DH sur l'axe de droite.

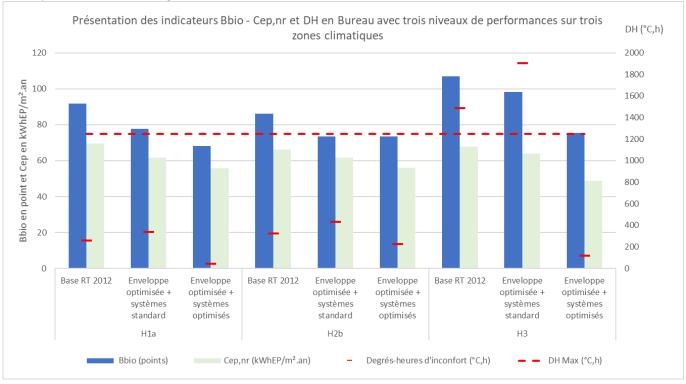


Figure 33 : Présentation des résultats des indicateurs Bbio, Cep, nr et DH pour les trois variantes étudiées sur trois zones climatiques pour le bâtiment de bureaux

Constats:

- Logiquement la variante « Enveloppe Optimisée » est plus performance que la variante « Base RT 2012 » pour les indicateurs Bbio et Cep, nr. A l'inverse l'indicateur DH est plus performant pour la variante « Base RT 2012 » par rapport à la variante « Enveloppe Optimisée ».
- Les indicateurs Bbio, Cep, nr et DH sont plus performant pour la variante « Enveloppe + Système Optimisés » par rapport à la variante « Enveloppe Optimisée » et à la variante « Base RT 2012 ».
- En Zone H3, si le seuil de DH max retenu est identique au résidentiel (1250 DH) les variantes « Enveloppe Optimisée » et « Base RT 2012 » ne sont pas règlementaire. Pour ces deux variantes, le Cfr a été ajouté manuellement, le moteur de calcul ne le calculant pas quand le seuil de DH Max est dépassé.

7.2.2. DESCRIPTIF TECHNIQUE

Comment lire ce tableau : Ce tableau présente l'évolution du descriptif technique réalisé par le BET entre le cas de base « RT 2012 » et les variantes « Enveloppe optimisée » et « Enveloppe + système optimisée » pour le bâtiment d'enseignement.

Variantes	Base RT 2012 Enveloppe Optimisée				
Structure	Maçonnerie	Maçonnerie			
Mur extérieur	ITE sous bardage R=5 m².k /W Up=0.22 W/(m2.K)	ITE sous bardage R=8 m².k /W Up=0.14 W/(m2.K)			
Mur sur locaux non chauffés	ITI R=3.15 m ² .k /W Up=0.29 W/(m2.K)	ITI R=3.8 m².k /W Up=0.25 W/(m2.K)			
Plancher bas / parking	Isolation sous dalle R=3.7 m².k /W Up=0.24 W/(m2.K)	Isolation sous dalle R=5,4 m².k /W Up=0.17 W/(m2.K)			
Toiture accessible R+4	R=3.6 m ² .k /W Up=0.26 W/(m2.K)	R=6.35 m².k /W Up=0.15 W/(m2.K)			
Toiture terrasse inacessible	R=6.35 m ² .k /W Up=0.15 W/(m2.K)	R=9 m ² .k /W Up=0.11 W/(m2.K)			
Menuiseries extérieures	Double Vitrage aluminium Uw=1.6 W/m².K Façade nord: Sw=0.45, Tlw=0.55 Autres orientations: Sw=0.25, Tlw=0.45	Double Vitrage aluminium Uw=1.4 W/m².K Façade nord: Sw=0.45, Tlw=0.55 Autres orientations: Sw=0.25, Tlw=0.45			
Perméabilité à l'air	1.7 (défaut)	1 (mesurée)			
Système Chauffage + ECS	PAC air/air ave	c climatisation			
Chaud	COP 7/20°C = 3,9 certifié VRV 0,4K				
Refroidissement	EER 35/27°C = 3,44 certifié VRV -0,4K				
Ventilation	DF 70% certifiée avec	préchauffage + bypass			
Éclairage	5W/m² détection de présence + gradation automatique dans bureaux et salles de réunion				

Tableau 26 : Présentation des descriptifs techniques pour les trois niveaux de performance (variantes) pour le bâtiment de bureaux.

Variantes « Enveloppe + Systèmes Optimisés » :

- Zone H1a: Enveloppe optimisée + brise-soleil avec gestion Suntracking
- Zone H2b : Enveloppe optimisée + rafraichissement adiabatique
- Zone H3: Enveloppe optimisée + brise-soleil avec gestion Suntracking + rafraichissement adiabatique

7.2.3. ANALYSE SUR L'INDICATEUR BBIO

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur Bbio et sa décomposition pour les variantes cas de base « RT 2012 » et les variantes « Enveloppe optimisée » et « Enveloppe + système optimisés » pour le bâtiment de bureaux sur trois zones climatiques avec le moteur de calcul RE 2020 R_452 de décembre 2020.

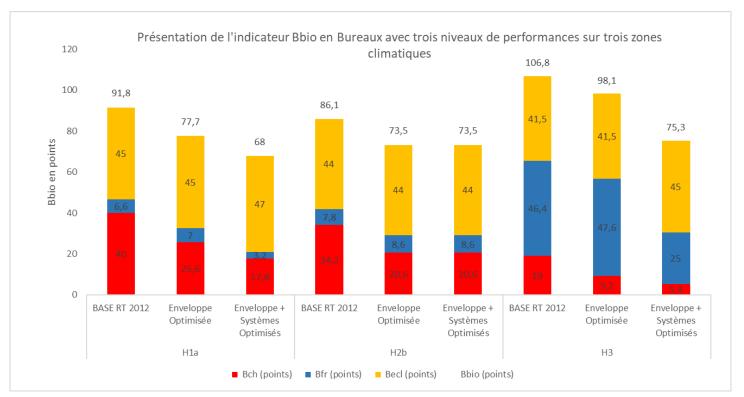


Figure 34 : Présentation des résultats de l'indicateur Bbio pour le bâtiment de bureaux avec trois niveaux de performances pour trois zones climatiques.

Constats:

- Entre la variante « Base RT 2012 » et les variantes « Enveloppe optimisée » et « Enveloppe + système optimisés » :
 - Le Bbio total baisse entre la variante de base et les variantes optimisées,
 - Le Bch diminue entre la variante de base et les variantes optimisées,
 - o Le Bfr:
 - Augmente entre la variante « base RT 2012 » et la variante « enveloppe optimisée », cela s'explique par le renforcement de l'enveloppe et de l'étanchéité à l'air.
 - Diminue en zones H1a et H3 avec la variante « Enveloppe + Systèmes optimisée » en comparaison avec les deux autres variantes. Cela s'explique par l'ajout de brise-soleil avec gestion Suntracking.
 - Le Becl est identique entre les variantes « Base RT 2012 » et « Enveloppe optimisée » et augmente en zones H1a et H3 avec la variante « Enveloppe + Systèmes optimisés » en raison de l'ajout de brise-soleil avec gestion Suntracking.

Décomposition du bbio

Comment lire ce tableau : ce tableau présente les résultats de l'indicateur Bbio et sa décomposition en % pour les variantes « Base RT 2012 » et les variantes « Enveloppe optimisée » et « Enveloppe + système optimisés » avec le moteur de calcul RE 2020 R_452.

Zone climatique	Variantes	Bch (points)	Bfr (points)	Becl (points)	Bbio (points)
H1a	BASE RT 2012	44%	7%	49%	91,8
H1a	Enveloppe Optimisée	33%	9%	58%	77,7
H1a	Enveloppe + Systèmes Optimisés	26%	5%	69%	68
H2b	BASE RT 2012	40%	9%	51%	86,1
H2b	Enveloppe Optimisée	28%	12%	60%	73,5
H2b	Enveloppe + Systèmes Optimisés	28%	12%	60%	73,5
H3	BASE RT 2012	18%	43%	39%	106,8
H3	Enveloppe Optimisée	9%	49%	42%	98,1
H3	Enveloppe + Systèmes Optimisés	7%	33%	60%	75,3

Tableau 27 : Présentation de l'indicateur Bbio et de sa décomposition pour les variantes « Base RT 2012 » et les variantes « Enveloppe optimisée » et « Enveloppe + système optimisés » avec le moteur de calcul RE 2020 R_452

→ Le Becl représente 60 % du Bbio pour la variante « Enveloppe + Systèmes Optimisés ».

7.2.4. ANALYSE SUR L'INDICATEUR CEP, NR ET DH

Comment lire ce graphique : ce graphique présente l'évolution de l'indicateur DH et Cep, nr avec sa décomposition pour les variantes cas de base « RT 2012 » et les variantes « Enveloppe optimisée » et « Enveloppe + système optimisés » pour le bâtiment de bureaux sur trois zones climatiques avec le moteur de calcul RE 2020 R_452 de décembre 2020.

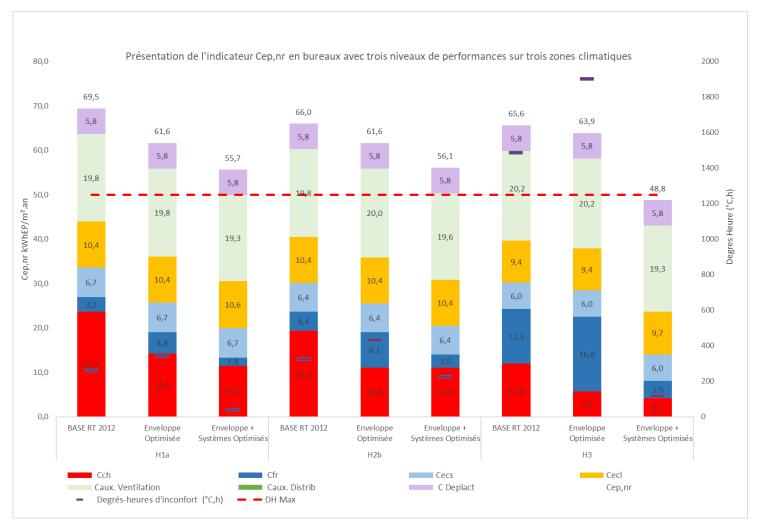


Figure 35 : Présentation des résultats des indicateurs Cep, nr et DH pour le bâtiment de bureaux avec 3 niveaux de performances base « RT 2012 » et les variantes « Enveloppe optimisée » et « Enveloppe + système optimisés » sur trois zones climatiques.

Constats:

- Entre la variante « Base RT 2012 », la variante « Enveloppe optimisée » et la variante « Enveloppe + système optimisée » :
 - Le Cep, nr baisse :
 - Entre la variante « base RT 2012 », la variante « Enveloppe optimisée » et la variante « Enveloppe + système optimisée »,
 - Le Cch diminue entre la variante de base et les variantes optimisées avec le renforcement de l'isolation et de l'étanchéité à l'air,
 - Le Cfr et les DH augmentent entre la variante de base et la variante « Enveloppe optimisée »,
 - Le Cfr et les DH diminuent entre la variante « Enveloppe optimisée » et « Enveloppe + système optimisés » avec l'ajout des brise-soleil avec gestion Suntracking et du rafraichissement adiabatique.
- En zone H3, seule la variante « enveloppe + systèmes optimisés » est inférieure à 1250 DH.

→ Le seuil d'exigence Cep,nrmax devra être calé en considérant les bâtiments non climatisés dans les zones climatiques où le confort d'été pourrait être suffisant sans recours à la climatisation (a minima H2a) et en considérant les bâtiments climatisés dans les zones climatiques où un confort d'été suffisant ne saurait être atteint sans recours à la climatisation, même avec des dispositifs passifs de rafraichissement. La difficulté étant qu'au sein d'une même zone climatique, elle peut être superflue ou au contraire indispensable selon la localisation du projet. Exemple en H1a, où elle pourrait être nécessaire pour un bâtiment situé à Paris et superflue pour un bâtiment situé à proximité des côtes de la Manche.

A titre d'exemple, pour l'année 2020, les DJU de climatisation étaient de 202h au Havre (H1a), 523,8h à Paris (H1a) et 774,5h à Nice (H3) (source : Infoclimat), soit une différence plus importante entre 2 sites situés sur la même zone climatique (Le Havre et Paris) qu'entre 2 sites situés sur des zones climatiques très différentes (Paris et Nice). A noter qu'il n'y a plus en RE2020 la distinction « zone littorale » et « zone intérieure » qui existait en RT2012 et qui permettait un niveau de détail plus fin pour le confort d'été que la zone climatique seule.

Décomposition du Cep, nr:

Comment lire ce tableau : ce tableau présente les résultats de l'indicateur Cep,nr et sa décomposition en % pour les variantes « Base RT 2012 » et les variantes « Enveloppe optimisée » et « Enveloppe + système optimisés » avec le moteur de calcul RE 2020 R 452.

Zone climatique	Variantes	Cch	Cfr	Cecs	Cecl	Caux. Ventilation	Caux. Distrib	C Deplact	Cep,nr	DH (°C,h)
H1a	BASE RT 2012	34%	5%	10%	15%	28%	0%	8%	69,5	260,6
H1a	Enveloppe Optimisée	23%	8%	11%	17%	32%	0%	9%	61,6	339,9
H1a	Enveloppe + Systèmes Optimisés	21%	3%	12%	19%	35%	0%	10%	55,7	41,2
H2b	BASE RT 2012	29%	7%	10%	16%	30%	0%	9%	66,0	324,6
H2b	Enveloppe Optimisée	18%	13%	10%	17%	32%	0%	9%	61,6	431,5
H2b	Enveloppe + Systèmes Optimisés	20%	5%	11%	18%	35%	0%	10%	56,1	225,6
H3	BASE RT 2012	18%	19%	9%	14%	31%	0%	9%	65,6	1486,6
H3	Enveloppe Optimisée	9%	26%	9%	15%	32%	0%	9%	63,9	1902,4
H3	Enveloppe + Systèmes Optimisés	8%	8%	12%	20%	40%	0%	12%	48.8	116.0

Tableau 28 : Présentation de l'indicateur Cep,nr et de sa décomposition pour les variantes « Base RT 2012 » et les variantes « Enveloppe optimisée » et « Enveloppe + système optimisés » avec le moteur de calcul RE 2020 R_452.

7.3. LE NOUVEL INDICATEUR DU CONFORT D'ETE: LES DEGRES HEURES (DH)

Pour les cas de base correspondant à la variante « Bbio RT 2012 » avec l'indicateur DH est de :

En zone H1a : de 449 DH,
En zone H2b : de 610 DH,
En zone H3 : de 2152 DH.

- → L'amplitude sur le nombre de DH est forte entre les zones climatiques « chaude » et « froide ». Logiquement, la zone H3 a le plus d'inconfort par rapport aux zones H1a et H2b.
- → L'indicateur DH est contraignant uniquement pour la zone H3, sans amélioration sur le confort d'été le bâtiment de l'étude y est non règlementaire en comparaison avec le seuil proposé dans le résidentiel (> à 1250 DH).
- → Ce niveau de DH élevé devrait permettre de bien discriminer les solutions pouvant améliorer le confort d'été.

7.3.1. LES POIDS DES AMELIORATIONS SUR LE CONFORT D'ETE - LES VARIANTES UNITAIRES

Comment lire le tableau ci-dessous :

Les résultats du « cas de base » sont la situation de référence. La variation des paramètres (variantes) permet de restituer leurs sensibilités pour chacun d'eux. L'évolution des indicateurs est restituée dans le tableau ci-dessous, soit en gain de confort ou en perte de confort pour l'indicateur DH, soit en baisse ou augmentation des besoins (Bfr en points) et des consommations de froid (Cfr en kWhEP/m².an).

/!\Modification cas de base : sans climatisation

Baisse des DH (amélioration)

Augmentation des DH (détérioration)

Zone Climatique		Н	1a	•		Н	2b	•		•	H3	•
Type de Variante	DH (°C.h)	Bfr (points)	Cfr (kWhEP/m².an)	Cep,nr (kWhEP/m².an)	DH (°C.h)	Bfr (points)	Cfr (kWhEP/m².an)	Cep,nr (kWhEP/m².an)	DH (°C.h)	Bfr (points)	Cfr (kWhEP/m².an)	Cep,nr (kWhEP/m².an)
Base	449,7	8,0	0,7	64,3	610,1	10,0	2,3	61,2	2152,0	53,6	19,5	68,2
Vitrages à contrôle solaire	378,1	4,6	0,2	67,3	492,3	4,8	1,4	63,6	1866,3	40,0	16,4	68,8
Inertie très légère	515,6	12,4	1,2	64,7	784,7	18,0	3,9	63,3	2249,9	57,2	20,5	72,0
Inertie moyenne	475,7	9,0	0,9	64,3	677,8	13,4	3,0	61,7	2173,6	54,0	19,7	69,6
Inertie très lourde	372,9	8,0	0,2	63,9	477,8	8,6	1,2	60,3	2099,5	53,8	18,9	67,1
Zone de bruit BR2	501,8	10,0	1,2	64,6	678,3	13,2	3,0	61,8	2425,7	56,2	22,4	71,1
Zone de bruit BR3	501,8	10,0	1,2	64,6	678,3	13,2	3,0	61,8	2425,7	56,2	22,4	71,1
Occultation non motorisée	458,2	8,2	0,7	64,8	622,9	10,2	2,5	61,7	2190,7	54,2	19,9	68,8
Occultation automatique	397,2	5,8	0,2	62,5	528,4	6,2	1,6	59,2	1944,8	41,2	17,2	64,8
occultation matrice profession IGNES	397,2	5,8	0,2	62,5	528,4	6,2	1,6	59,2	1944,8	41,2	17,2	64,8
occultation sunis store bureau	397,2	5,8	0,2	62,5	528,4	6,2	1,6	59,2	1944,8	41,2	17,2	64,8
Occultation matrice suntracking	217,6	2,2	0,0	63,8	265,3	1,2	0,0	59,3	1270,4	25,4	9,9	58,4
Ouverture automatique des baies	126,2	3,0	0,0	63,5	163,3	2,8	0,0	58,8	673,6	20,4	3,5	52,3
Couleur claire murs	432,9	7,8	0,7	64,5	579,8	9,4	2,1	61,3	2070,4	52,2	18,6	67,5
Couleur claire TT	440,7	7,8	0,7	64,4	595,6	9,6	2,3	61,3	2104,7	52,4	19,0	67,7
Casquette	423,2	7,2	0,5	65,1	562,2	8,4	1,8	61,6	2039,6	49,4	18,2	67,7
Rouv 0,4	563,2	11,6	1,6	65,1	754,6	16,0	3,7	62,5	2725,2	59,2	25,7	74,4
Rouv 0	1402,6	35,2	7,6	71,0	1847,2	40,2	13,5	72,3	5149,7	83,6	51,8	100,3
Brasseurs	298,3	8,0	0,0	64,1	411,8	10,0	0,5	60,0	1343,1	53,6	10,7	62,7
VMC Simple Flux	423,6	8,0	0,5	65,8	563,0	10,0	1,8	62,6	1955,5	53,6	17,3	65,1
Puits climatique	173,0	8,0	0,0	61,5	228,1	10,0	0,0	56,6	1291,8	53,6	10,2	57,0
Surventilation nocturne	316,3	8,0	0,0	71,9	402,9	10,0	0,5	68,2	1550,8	53,6	13,0	72,7
Rafraichissement adiabatique	94,6	8,0	0,0	63,5	131,9	10,0	0,0	58,9	562,1	53,6	2,3	51,2
Rat_I	455,1	8,6	0,7	64,0	619,0	10,2	2,5	61,0	2171,0	54,0	19,7	68,2

Tableau 29 : Présentation des résultats pour le bâtiment de bureau des impacts des variantes unitaires sur les indicateurs du confort d'été (DH, Bfr et Cfr).

Les facteurs de premier ordre d'influence sur les DH sont :

Baisse des DH (amélioration)	Augmentation des DH (détérioration)
Ajout de « rafraichissement adiabatique » par rapport à sans. Ne permet pas d'être sous le seuil des 350 DH en zone H3 mais c'est la variante qui s'en rapproche le plus (562 DH). Pas d'impact sur le Bfr	Modification du Ratio d'ouverture des baies.
Ajout de l'ouverture automatique des baies par rapport à sans. Baisse importante des DH et du Bfr.	Modification de la zone de bruit.
Ajout de « Brise soleil avec matrice suntracking » par rapport à sans. Baisse des DH et du Bfr mais ne permet pas en H3 d'être sous le seuil des 1250 DH mais s'en approche (1270 DH).	Inertie moyenne et très légère par rapport à inertie lourde. Augmentation modérée du Bfr
Ajout d'un « puits climatique » par rapport à sans. Baisse des DH, < à 350 DH en H1a et H2b, en H3 ne permet pas d'être sous le seuil des 1250 DH mais s'en approche (1291 DH). Le débit qui transite par le puits climatique est le débit dit « sanitaire », il offre une performance acceptable sur l'indicateur DH en zone H1a, H2b. Pour la zone H3, il sera nécessaire d'optimiser le débit via la surventilation (nocturne ou diurne) afin de baisser le nombre de DH sous réserve de respecter le Cepnr.	
Ajout de « brasseurs d'air » par rapport à sans. Baisse des DH mais ne permet pas en H3 d'être sous le seuil des 1250 DH.	
Surventilation nocturne par rapport à sans mais forte augmentation du Cep,nr (Caux. Ventilation). Pas d'impact sur le Bfr.	
Vitrages à contrôle solaire par rapport à sans. Baisse importante du Bfr – légère hausse du Bch et Bbio total inférieur au Bbio de base.	
Ouverture automatique des baies (< à 350 DH en zone H1a mais pas < à 1250 DH en zone H3) par rapport à sans. baisse très importante du Bfr.	

Constats:

- Le rafraichissement adiabatique permet une diminution drastique des DH sur l'ensemble des zones climatiques ; n'étant pas une pratique très répandue actuellement, il faudra s'assurer que le gain théorique sur le confort d'été n'est pas surestimé par rapport au gain constaté sur le terrain.

- Différence très importante de DH calculée, à prestations identiques, entre les zones les plus septentrionales et méridionales. En conséquence, un seuil haut de DH uniforme sur l'ensemble des zones conduirait à :
 - Peu ou pas de contrainte dans les zones les moins chaudes : le seuil haut peut être respecté avec des prestations moins performantes que les pratiques courantes actuelles, alors que celles-ci ne permettent pas toujours elles-mêmes d'assurer un confort d'été suffisant
 - → Importance de bien caler les seuils de Bbio et Cep,nr pour ne pas permettre un relâchement des efforts sur le confort d'été / RT2012
 - Beaucoup de contraintes dans les zones les plus chaudes : le seuil haut ne peut être respecté qu'avec des prestations plus performantes que les pratiques courantes actuelles
 - → Importance de bien caler les seuils de Bbio et Cep,nr de façon à permettre la mise en place de la climatisation lorsque celle-ci est nécessaire
- Moins de leviers en bâtiment climatisé pour diminuer les DH en raison de l'absence de prise en compte des brasseurs d'air ; attention, s'assurer que pour les zones les plus chaudes, le seuil haut de DH soit atteignable en bâtiment climatisé, sans quoi le risque pourrait être d'inciter à livrer des bâtiments non climatisés et de les climatiser après coup avec des systèmes peu performants

8. TABLE DES ILLUSTRATIONS

8.1. TABLE DES FIGURES

Figure 1 : Présentation pour les trois MI de l'étude sur trois zones climatiques des résultats de l'indicateur Bbio pour des cas de base qui respectent l'exigence Bbio max RT 2012 et transposés dans le moteur RE 2020
Figure 5 : Présentation des résultats des indicateurs Cep, nr et sa décomposition et DH pour la MI 1N pour les
variantes « RT 2012 » et « Bbio Max RT 2012 40 points »
Figure 6 : Présentation des résultats des indicateurs Bbio, Cep, nr, Ic _{énergie} et DH pour la MI R+C pour les variantes « RT 2012 » et « Bbio Max RT 2012 40 points »
Figure 7 : Comparaison de l'indicateur Bbio pour la MI R+C entre la variante « Base RT 2012 » et « Bbiomax RT 2012 40 points »
Figure 8 : Présentation des résultats des indicateurs Cep, nr et sa décomposition et DH pour la MI R+C pour les variantes « RT 2012 » et « Bbio Max RT 2012 40 points »
Figure 9 : Présentation des résultats des indicateurs Bbio, Cep, nr, Ic _{énergie} et DH pour la MI R+1 pour les variante « RT 2012 » et « Bbio Max RT 2012 40 points »
Figure 10 : Comparaison de l'indicateur Bbio pour la MI R+1 entre la variante « Base RT 2012 » et « Bbiomax RT 2012 40 points »
Figure 11 : Présentation des résultats des indicateurs Cep, nr et sa décomposition et DH pour la MI R+1 pour les variantes « RT 2012 » et « Bbio Max RT 2012 40 points »
Figure 12 : Présentation du Cfr selon les DH pour l'ensemble des variantes en MI (toutes typologies) selon les 3 cones climatiques
Figure 13 : Présentation des indicateurs Cep, nr, Cep, nr max, DH et DH max pour les MI en zone H3 selon trois niveaux de performance
Figure 14 : Exemple fictif des indicateurs Cep, nr, Cep, nr max pour les MI en zone H3 selon trois niveaux de performance avec des DH < à 350 et un Cfr à 0 kWhEP/m².an pour les MI en zone H3 selon trois niveaux de
performance
Figure 15 : Evolution de l'indicateur Bbio le LC sur trois zones climatiques – niveau de performance « Bbio max RT 2012 – 30 % » – le moteur RE 2020 R_346 et le moteur RE 2020 R_42744
Figure 16 : Comparaison de l'indicateur Bbio avec le moteur RE 2020 R_427 avec deux niveaux de performance.
Figure 17 : Présentation des résultats des indicateurs Bbio, Cep, nr, Ic _{énergie} et DH pour le logement collectif avec
deux niveaux de performances « Bbio RT 2012 – 30 % » et « Bbio RT 2012 – 40 % » sur trois zones climatiques.4° Figure 18 : Présentation des résultats de l'indicateur Bbio pour le logement collectif avec deux niveaux de
performances « Bbio RT 2012 – 30 % » et « Bbio RT 2012 – 40 % » pour trois zones climatiques49
Figure 19 : Présentation des résultats des indicateurs Cep, nr, Icénergie et DH pour le logement collectif avec
deux niveaux de performances Bbio RT 2012 – 30 % et Bbio RT 2012 – 40 % en zone climatique H2b5 Figure 20 : Présentation des résultats des indicateurs Cep, nr, Icénergie et DH pour le logement collectif avec
deux niveaux de performances Bbio RT 2012 – 30 % et Bbio RT 2012 – 40 % en zone climatique H1b5

Figure 21 : Presentation des resultats des indicateurs Cep, nr, Icenergie et DH pour le logement collectif avec
deux niveaux de performances Bbio RT 2012 – 30 % et Bbio RT 2012 – 40 % en zone climatique H355
Figure 22 : Présentation des variantes combinatoires « confort d'été » pour le logement collectif sur trois zones
climatiques 57
Figure 23 : Evolution de l'indicateur Bbio pour le bâtiment d'enseignement sur trois zones climatiques – niveau
de performance « Base RT2012 » – le moteur RE 2020 R_379 et le moteur RE 2020 R_45259
Figure 24 : Evolution de l'indicateur Cep, nr pour le bâtiment d'enseignement sur trois zones climatiques –
niveau de performance « Base RT2012 » entre le moteur RE 2020 R_379 et le moteur RE 2020 R_452 60
Figure 25 : Présentation des résultats pour le bâtiment d'enseignement sur trois zones climatiques avec trois
niveaux de performance
Figure 26 : Présentation des résultats de l'indicateur Bbio pour le bâtiment d'enseignement avec trois niveaux
de performances pour trois zones climatiques 63
Figure 27 : Présentation de l'indicateur Bbio et de sa décomposition pour les variantes « Base RT 2012 » et les
variantes « Enveloppe optimisée » et « Enveloppe + système optimisés » avec le moteur de calcul RE 2020
R 45263
Figure 28 : Présentation des résultats des indicateurs Cep, nr et DH pour le bâtiment d'enseignement avec 3
niveaux de performances base « RT 2012 » et les variantes « Enveloppe optimisée » et « Enveloppe + système
optimisés » sur trois zones climatiques
Figure 29 : Présentation de l'indicateur Cep,nr et de sa décomposition pour les variantes « Base RT 2012 » et les
variantes « Enveloppe optimisée » et « Enveloppe + système optimisés » avec le moteur de calcul RE 2020
R_45265
Figure 30 : Présentation des résultats pour le bâtiment d'enseignement des impacts des variantes unitaires sur
les indicateurs du confort d'été (DH, Bfr et Cfr)67
Figure 31 : Evolution de l'indicateur Bbio pour le bâtiment de bureaux sur trois zones climatiques – niveau de
performance « Base RT2012 » – le moteur RE 2020 R_379 et le moteur RE 2020 R_452
Figure 32 : Evolution de l'indicateur Cep, nr pour le bâtiment de bureaux sur trois zones climatiques – niveau de
performance « Base RT2012 » entre le moteur RE 2020 R 379 et le moteur RE 2020 R 452
Figure 33 : Présentation des résultats des indicateurs Bbio, Cep, nr et DH pour les trois variantes étudiées sur
trois zones climatiques pour le bâtiment de bureaux72
Figure 34 : Présentation des résultats de l'indicateur Bbio pour le bâtiment de bureaux avec trois niveaux de
performances pour trois zones climatiques
de performances base « RT 2012 » et les variantes « Enveloppe optimisée » et « Enveloppe + système optimisés
» sur trois zones climatiques
8.2. TABLES DES TABLEAUX
Tableau 1 : Evolution de l'indicateur Bbio et sa décomposition pour la MI R+C sur trois zones climatiques avec 1
niveau de performance « RT 2012 » et trois moteurs de calcul : le moteur RT 2012 – le moteur RE 2020 R_346 et
le moteur RE 2020 R_427
Tableau 2 : Evolution de l'indicateur Cep, nr et DH pour la Maison R+C sur trois zones climatiques – niveau de
performance « RT 2012 » entre le moteur RT 2012 – le moteur RE 2020 R_346 et le moteur RE 2020 R_427 18
Tableau 3 : Présentation des descriptifs techniques pour la MI 1N pour les variantes « RT 2012 » et « Bbio Max
RT 2012 40 noints »

Tableau 4 : Présentation de l'indicateur Bbio et de sa décomposition pour les variantes Base RT 2012 et Bbio RT
2012 40 points avec le moteur RE 2020 R_42723
Tableau 5 : Présentation de l'indicateur Cep, nr et de sa décomposition pour les variantes Base RT 2012 et Bbio
RT 2012 40 points avec le moteur RE 2020 R_42725
Tableau 6 : Présentation des résultats des indicateurs Ic _{énergie} et Ic _{énergie} max pour la MI 1N pour les variantes « RT
2012 » et « Bbio Max RT 2012 40 points »
Tableau 7 : Présentation des descriptifs techniques pour la MI R+C pour les variantes « RT 2012 » et « Bbio Max
RT 2012 40 points »
Tableau 8 : Présentation de l'indicateur Bbio et de sa décomposition pour les variantes Base RT 2012 et Bbio RT
2012 40 points avec le moteur RE 2020 R_42728
Tableau 9 : Présentation de l'indicateur Cep, nr et de sa décomposition pour les variantes Base RT 2012 et Bbio
RT 2012 40 points avec le moteur RE 2020 R_42730
Tableau 10 : Présentation des résultats des indicateurs Icénergie et Icénergie max pour la MI R+C pour les variantes
« RT 2012 » et « Bbio Max RT 2012 40 points »30
Tableau 11: Présentation des descriptifs techniques pour la MI R+C pour les variantes « RT 2012 » et « Bbio
Max RT 2012 40 points »
Tableau 12 : Présentation de l'indicateur Bbio et de sa décomposition pour les variantes Base RT 2012 et Bbio RT
2012 40 points avec le moteur RE 2020 R_42734
Tableau 13 : Présentation de l'indicateur Cep, nr et de sa décomposition pour les variantes Base RT 2012 et Bbio
RT 2012 40 points avec le moteur RE 2020 R_42735
Tableau 14: Présentation des résultats des indicateurs Icénergie et Icénergie max pour la MI R+1 pour les variantes
« RT 2012 » et « Bbio Max RT 2012 40 points »
Tableau 15 : Présentation des variations des DH en fonction des zones climatiques
Tableau 16 : Présentation des résultats pour les variantes « confort d'été » sur les indicateurs DH (°C,h), Bfr
(points), Cfr (kWhEP/m².an) pour la MI R+C pour les zones climatiques H1a, H2b et H3
Tableau 18 : Comparaison des résultats entre le moteur R_427 et R_452 pour la variante « Base RT 2012 » avec
les variantes « occultations automatisés » pour la MI R+C40
Tableau 17 : Présentation des résultats des variantes « confort d'été combinatoires » sur les indicateurs DH
(°C,h), Bfr (points), Cfr (kWhEP/m².an), pour la MI R+C sur trois zones climatiques41
Tableau 20 : Evolution de l'indicateur Cep, nr et DH pour la Maison R+C sur trois zones climatiques – niveau de
performance « RT 2012 » entre le moteur RT 2012 – le moteur RE 2020 R_346 et le moteur RE 2020 R_427 46
Tableau 21 : Présentation de l'indicateur Bbio et de sa décomposition pour les variantes Base RT 2012 et Bbio RT
2012 -30% avec le moteur RE 2020 R_42750
Tableau 22 : Comparaison des indicateurs Cep, nr, Cep, nr max, Ic _{énergie} , Ic _{énergie} max 2021 et 2024 pour le LC en
zone H2b52
Tableau 23 : Comparaison des indicateurs Cep, nr, Cep, nr max, Icénergie, Icénergiemax 2021 et 2024 pour le LC
en zone H1b54
Tableau 24 : Comparaison des indicateurs Cep, nr, Cep, nr max, Icénergie, Icénergiemax 2021 et 2024 pour le LC
en zone H356
Tableau 25 : Comparaison des résultats entre le moteur R_427 et R_452 pour la variante « Base RT 2012 » avec
les variantes « Volets Roulants automatisés » en LC58
Tableau 26 : Présentation des descriptifs techniques pour les trois niveaux de performance (variantes) pour le
bâtiment d'enseignement62

ANNEXE 1 : LISTE DES VALEURS DES PONTS THERMIQUES DE L'ETUDE.

MAISON INDIVIDUELLE

	Bloc béton	•	•
	1N	R+1	R+C
Façade / plancher bas	0,05	0,05	0,05
Façade / plancher intermédiaire		0,24	0,24
Façade / plancher intermédiaire / balcon			
Facade / plancher haut	0,07 / 0,04	0,16	0,16 / 0,07 / 0,04
Facade / refend			0,41
Refend / plancher bas			
Refend / plancher haut			
Façade angles sortants	0		
Façade angles rentrants	0,12		0,12
Seuils de portes	0,14	0,14	0,14
Appuis de fenêtre	0,04	0,04	0,04
Linteaux et tableaux de menuiseries			

	Brique Ru > 1		
	1N	R+1	R+C
Façade / plancher bas	0,05	0,05	0,05
Façade / plancher intermédiaire		0,22	0,22
Façade / plancher intermédiaire / balcon			
Facade / plancher haut	0,06 / 0,04	0,16	0,16 / 0,06 / 0,04
Facade / refend			0,18
Refend / plancher bas			
Refend / plancher haut			
Façade angles sortants			
Façade angles rentrants	0,07		0,07
Seuils de portes	0,14	0,14	0,14
Appuis de fenêtre	0,04	0,04	0,04
Linteaux et tableaux de menuiseries			

	Ossature boi	S	•
	1N	R+1	R+C
Façade / plancher bas	0,06	0,06	0,06
Façade / plancher intermédiaire		0,14	0,14
Façade / plancher intermédiaire / balcon			
Facade / plancher haut	0,07/0,04	0,14	0,07/0,04
Facade / refend			0,1
Refend / plancher bas			0,13
Refend / plancher haut			
Façade angles sortants	0,08	0,08	0,08
Façade angles rentrants	0,12		0,012
Seuils de portes	0,14	0,14	0,14
Appuis de fenêtre	0,04	0,04	0,04
Linteaux et tableaux de menuiseries			

LOGEMENT COLLECTIF

	BbioRT12-30%	BbioRT12-40%
Façade / plancher bas	0,23	0,23
 Façade / plancher intermédiaire	0,279	0,279
raçade / prancher intermediane	Traité à 90%	Traité à 90%
Facada / planchar intermédiaire / balcan	0,645	0,369
Façade / plancher intermédiaire / balcon	Traité à 50%	Traité à 90%
Facada / planchar haut	0,264	0,264
Facade / plancher haut	Traité à 90%	Traité à 90%
Facade / refend	0,99	0,99
Façade angles sortants	0,02	0,02
Façade angles rentrants	0,12	0,12
Seuils de portes	0,32	0,32
Appuis de fenêtre	0,13	0,13
Linteaux et tableaux de menuiseries	0	0

BUREAU

		Bâti standard		Bâti optimisé			
	Béton + ITE	PP + Façade rideau	Panneaux CLT	Béton + ITE	PP + Façade rideau	Panneaux CLT	
Mur / ext	Voile béton + ITE	Façade F4	Isolation entre	Voile béton + ITE	Façade F4	Isolation entre montants	
	160mm LDV R=5 sous	Isolation 120+80mm	montants 140mm	240mm LDV R=8 sous	Isolation 120+140mm	140mm LDV R=4.35 + ITI	
	bardage	R=6.25	LDV R=4.35 + ITI	bardage	R=8.15	100mm LDV R=3.15 + ITE	
	Up=0.22	Up=0.20	60mm LDV R=1.85	Up=0.14	Up=0.14	60mm LDV R=1.85	
	Couleur moyenne	Couleur moyenne	Up=0.17	Couleur moyenne	Couleur moyenne	Up=0.12	
			Couleur moyenne			Couleur moyenne	
Mur / Inc	Voile béton + ITI	Voile béton + ITI	Blocs creux + ITI	Voile béton + ITI 120mm	Voile béton + ITI	Blocs creux + ITI 120mm	
	100mm PSE R=3.15	100mm PSE R=3.15	100mm PSE R=3.15	PSE R=3.8	120mm PSE R=3.8	PSE R=3.8	
	Up=0.29	Up=0.29	Up=0.28	Up=0.25	Up=0.25	Up=0.24	
Plancher bas /	Dalle béton +	Dalle béton +	Dalle béton +	Dalle béton + isolation	Dalle béton +	Dalle béton + isolation	
parking	isolation sous dalle	isolation sous dalle	isolation sous dalle	sous dalle Fibra Ultra FC	isolation sous dalle	sous dalle Fibra Ultra FC	
	Fibra Ultra FC 125mm	Fibra Ultra FC 125mm	Fibra Ultra FC 125mm	180mm PSE R=5.4	Fibra Ultra FC 180mm	180mm PSE R=5.4	
	PSE R=3.7	PSE R=3.7	PSE R=3.7	Up=0.17	PSE R=5.4	Up=0.17	
	Up=0.24	Up=0.24	Up=0.24		Up=0.17		
Plancher bas /	Dalle béton +	Dalle béton +	Panneaux CLT	Dalle béton + isolation	Dalle béton +	Panneaux CLT 200mm +	
local vélo	isolation sous dalle	isolation sous dalle	200mm + isolation	sous dalle Fibra Ultra FC	isolation sous dalle	isolation sous dalle Fibra	
	Fibra Ultra FC 125mm	Fibra Ultra FC 125mm	sous dalle Fibra Ultra	180mm PSE R=5.4	Fibra Ultra FC 180mm	Ultra FC 150mm PSE	
	PSE R=3.7	PSE R=3.7	FC 100mm PSE R=2.9	Up=0.17	PSE R=5.4	R=4.5	
	Up=0.24	Up=0.24	Up=0.21		Up=0.17	Up=0.16	
Toiture accessible	Dalle béton +	Dalle béton +	Panneaux CLT	Dalle béton + isolation	Dalle béton +	Panneaux CLT 200mm +	
R+4	isolation 80mm PUR	isolation 80mm PUR	200mm + 80mm PUR	140mm PUR R=6.35	isolation 140mm PUR	80mm PUR R=3.6	
	R=3.6	R=3.6	R=3.6	Up=0.15	R=6.35	Up=0.19	
	Up=0.26	Up=0.26	Up=0.19	Couleur sombre	Up=0.15	Couleur sombre	
	Couleur sombre	Couleur sombre	Couleur sombre		Couleur sombre		
Toiture terrasse	Dalle béton +	Dalle béton +	Panneaux CLT	Dalle béton + isolation	Dalle béton +	Panneaux CLT 200mm +	
	isolation 140mm PUR	isolation 140mm PUR	200mm + 140mm	200mm PUR R=9	isolation 200mm PUR	200mm PUR R=9	
	R=6.35	R=6.35	PUR R=6.35	Up=0.11	R=9	Up=0.09	

	Up=0.15	Up=0.15	Up=0.12	Couleur sombre	Up=0.11	Couleur sombre
	Couleur sombre	Couleur sombre	Couleur sombre		Couleur sombre	
Menuiseries	Double vitrage alu					
extérieures	Uw=1.6	Uw=1.6	Uw=1.6	Uw=1.4	Uw=1.4	Uw=1.4
	Façade nord :					
	Sw=0.45, Tlw=0.55					
	Autres orientations :					
	Sw=0.25, Tlw=0.45					
Perméabilité à	1.7 (défaut)	1.7 (défaut)	1.7 (défaut)	1 (mesurée)	1 (mesurée)	1 (mesurée)
l'air						
Ponts thermiques						
PB/sous-sol	0.66	0.66	0.79	0.66	0.66	0.66
	ITE1.2.1	ITE1.2.1	OB4.13	ITE1.2.1	ITE1.2.1	ITE1.2.1
PB/local vélo	0.59	0.59	0.59	0.59	0.59	0.59
	ITE1.5.1	ITE1.5.1	ITE1.5.1	ITE1.5.1	ITE1.5.1	ITE1.5.1
Refend local vélo	0.03	0.03	0.03	0.03	0.03	0.03
	ITE1.3.1	ITE1.3.1	ITE1.3.1	ITE1.3.1	ITE1.3.1	ITE1.3.1
PI	0.07	0.07	0.13	0.07	0.07	0.13
	ITE4.3.1	ITE4.3.1	OB5.3	ITE4.3.1	ITE4.3.1	OB5.3
TT	0.74	0.74	0.10	0.31	0.31	0.10
	ITE3.1.1	ITE3.1.1	OB6.6	ITE3.1.5	ITE3.1.5	OB6.6
AS	0.15	0.15	0.07	0.15	0.15	0.07
	ITE4.1.1	ITE4.1.1	OB2.2	ITE4.1.1	ITE4.1.1	OB2.2
AR	0.03	0.03	0.11	0.03	0.03	0.11
	ITE4.2.1	ITE4.2.1	OB2.3	ITE4.2.1	ITE4.2.1	OB2.3
Appui	0.12	0.14	0.11	0.12	0.14	0.11
	ITE5.1.3	ITE5.1.2	Absence d'info	ITE5.1.3	ITE5.1.2	Absence d'info
Linteau	0.11	0	0	0.11	0	0
	ITE5.2.3	ITE5.2.2		ITE5.2.3	ITE5.2.2	
Tableau	0.11	0	0	0.11	0	0

	ITEE 2 2	ITES 2 2	ITEE 2 2	ITF5 3 2	
	1163.3.3	1163.3.2	1163.3.3	1163.3.2	

ENSEIGNEMENT PRIMAIRE

	l							1
	Bâti standard				Bâti optimisé	T		T
	Béton + ITI	PP + Façade bois	Panneaux CLT	Brique	Béton + ITE	PP + Façade bois	Panneaux CLT	Brique
Mur / ext	Voile béton + ITI	Isolation entre	Isolation entre	Brique creuse	Voile béton + ITE	Isolation entre	Isolation entre	Brique creuse
	120mm LDV	montants	montants	R=1 + ITI 100mm	240mm LDV R=8	montants	montants	R=1 + ITE
	R=3.75	140mm LDV	140mm LDV	LDV R=3.15	sous bardage	140mm LDV	140mm LDV	240mm LDV R=8
	Up=0.25	R=4.35 + ITI	R=4.35 + ITI	Up=0.23	Up=0.14	R=4.35 + ITI	R=4.35 + ITI	sous bardage
	Couleur	60mm LDV	60mm LDV	Couleur	Couleur	100mm LDV	100mm LDV	Up=0.13
	moyenne	R=1.85	R=1.85	moyenne	moyenne	R=3.15 + ITE	R=3.15 + ITE	Couleur
		Up=0.17	Up=0.17			60mm LDV	60mm LDV	moyenne
		Couleur	Couleur			R=1.85	R=1.85	
		moyenne	moyenne			Up=0.12	Up=0.12	
						Couleur	Couleur	
						moyenne	moyenne	
Mur / Inc	Voile béton + ITI	Voile béton + ITI	Blocs creux + ITI	Brique creuse	Voile béton + ITI	Voile béton + ITI	Blocs creux + ITI	Brique creuse
	100mm PSE	100mm PSE	100mm PSE	R=1 + ITI 80mm	120mm PSE	120mm PSE	120mm PSE	R=1 + ITI 120mm
	R=3.15	R=3.15	R=3.15	LDV R=2.5	R=3.8	R=3.8	R=3.8	LDV R=3.8
	Up=0.29	Up=0.29	Up=0.28	Up=0.27	Up=0.25	Up=0.25	Up=0.24	Up=0.23
Plancher bas /	Dalle béton +							
vide sanitaire	isolation sous							
	dalle Fibra Ultra							
	FC 125mm PSE	FC 125mm PSE	FC 125mm PSE	FC 125mm PSE	FC 180mm PSE	FC 180mm PSE	FC 180mm PSE	FC 180mm PSE
	R=3.7	R=3.7	R=3.7	R=3.7	R=5.4	R=5.4	R=5.4	R=5.4
	Up=0.24	Up=0.24	Up=0.24	Up=0.24	Up=0.17	Up=0.17	Up=0.17	Up=0.17
Plancher bas /	Dalle béton +	Dalle béton +	Panneaux CLT	Dalle béton +	Dalle béton +	Dalle béton +	Panneaux CLT	Dalle béton +
locaux non	isolation sous	isolation sous	220mm +	isolation sous	isolation sous	isolation sous	220mm +	isolation sous

chauffés	dalle Fibra Ultra	dalle Fibra Ultra	isolation sous	dalle Fibra Ultra	dalle Fibra Ultra	dalle Fibra Ultra	isolation sous	dalle Fibra Ultra
	FC 125mm PSE	FC 125mm PSE	dalle Fibra Ultra	FC 125mm PSE	FC 180mm PSE	FC 180mm PSE	dalle Fibra Ultra	FC 180mm PSE
	R=3.7	R=3.7	FC 100mm PSE	R=3.7	R=5.4	R=5.4	FC 150mm PSE	R=5.4
	Up=0.24	Up=0.24	R=2.9	Up=0.24	Up=0.17	Up=0.17	R=4.5	Up=0.17
		·	Up=0.21	•			Up=0.16	
Toiture	Dalle béton +	Dalle béton +	Panneaux CLT	Dalle béton +	Dalle béton +	Dalle béton +	Panneaux CLT	Dalle béton +
terrasse	isolation 140mm	isolation 140mm	220mm +	isolation 140mm	isolation 200mm	isolation 200mm	220mm +	isolation 200mm
	PUR R=6.35	PUR R=6.35	140mm PUR	PUR R=6.35	PUR R=9	PUR R=9	200mm PUR R=9	PUR R=9
	Up=0.15	Up=0.15	R=6.35	Up=0.15	Up=0.11	Up=0.11	Up=0.09	Up=0.11
	Couleur sombre	Couleur sombre	Up=0.12	Couleur sombre				
			Couleur sombre					
Menuiseries	Double vitrage							
extérieures	alu							
	Uw=1.6	Uw=1.6	Uw=1.6	Uw=1.6	Uw=1.4	Uw=1.4	Uw=1.4	Uw=1.4
	Sw=0.45,							
	Tlw=0.55							
	Stores							
	extérieurs							
Perméabilité à	1.7 (défaut)	1.7 (défaut)	1.7 (défaut)	1.7 (défaut)	1 (mesurée)	1 (mesurée)	1 (mesurée)	1 (mesurée)
l'air								
Ponts								
thermiques								
Angles	0.13	0.11	0.11	0.07	0.03	0.11	0.11	0.03
rentrants	ITI4.2.1	OB2.3	OB2.3	OB4.2.4	ITE4.2.1	OB2.3	OB2.3	ITE4.2.1
Angles	0.02	0.07	0.07	0.02	0.15	0.07	0.07	0.15
sortants	ITI4.1.1	OB2.2	OB2.2	ITI4.1.1	ITE4.1.1	OB2.2	OB2.2	ITE4.1.1
ME/RF	0.99	0.06	0.11	0.20	0.07	0.06	0.11	0.07
	ITI4.3.1	OB3.9	OB3.3	ITI4.3.11	ITE4.3.1	OB3.9	OB3.3	ITE4.3.1
Appui	0.11	0.11	0.11	0.11	0.12	0.11	0.11	0.12
	ITI5.1.2	Absence d'info	Absence d'info	ITI5.1.2	ITE5.1.3	Absence d'info	Absence d'info	ITE5.1.3

Linteau	0	0	0	0	0.11	0	0	0.11
					ITE5.2.3			ITE5.2.3
Tableau	0	0	0	0	0.11	0	0	0.11
					ITE5.3.3			ITE5.3.3
PB/ME	0.7	0.79	0.79	0.59	0.66	0.66	0.66	0.6
	ITI1.2.1	OB4.13	OB4.13	ITI1.2.19	ITE1.2.1	ITE1.2.1	ITE1.2.1	ITE1.2.6
PB/ME RF	0.75	0.75	0.75	0.39	0.03	0.03	0.75	0.03
	ITI1.3.1	ITI1.3.1	ITI1.3.1	ITI1.3.8	ITE1.3.1	ITE1.3.1	ITI1.3.1	ITE1.3.1
PI	0.5	0.1	0.13	0.38	0.07	0.1	0.13	0.07
	Traitement	OB5.8	OB5.3	ITI2.1.24	ITE2.1.1	OB5.8	OB5.3	ITE2.1.1
	partiel par							
	rupteurs (0.99							
	en partie							
	courante, 0.2							
	pour les							
	rupteurs, soit							
	62% de rupteurs							
TT	0.84	0.13	0.10	0.75	0.31	0.13	0.10	0.31
	ITI3.1.1	OB6.30	OB6.6	ITI3.1.5	ITE3.1.5	OB6.30	OB6.6	ITE3.1.5